
Disrete-Time Proess-Oriented Simulationwith J-SimJaroslav Ka�er1University of West Bohemia, Faulty of Applied Sienes,Department of Computer Siene and Engineering,Univerzitn�� 8, 30614 Plze�n, Czeh Republijkaer�kiv.zu.zAbstrat. This paper desribes J-Sim, a Java library for disrete-timeproess-oriented simulation. J-Sim is a fully portable suessor to C-Sim, an already existing library written in C. The onepts used in bothlibraries are inherited from the Simula language. The theoretial bak-ground, basi priniples of implementation, and two simple examples ofuse are presented in this paper.1 IntrodutionJ-Sim is a software pakage whose primary goal is to failitate simulation ofdisrete-time systems in Java. It is strongly inspired by Simula, the �rst widelyused simulation language, developed in the 1960s by Ole-Johan Dahl and KristenNygaard. (More information about the history and priniples of Simula an befound in [4℄.) J-Sim o�ers all onepts known from Simula, inluding the possibil-ity of modelling networks whih onsist of ative stations serving a passive owof ustomers. Stations are usually omposed of two parts: a queue and a server,managing the queue. However, a di�erent approah an be taken: the ustomersan be represented by ative objets, interating with passive stations. J-Sim isompletely independent of any of the two models, it is only a tool allowing aspei� model to be desribed and simulated using the Java language. Moreover,J-Sim is not limited to queueing networks modelling, it an be used for any kindof simulation having disrete-time harater.2 The Simulation World DesriptionA simulation model an ontain a various number of independent ative pro-esses. Every proess has its own pre-programmed life whih an be dividedinto parts. All proesses within the same simulation model share the same time,alled the simulation time. Its value is equal to zero before the simulation startsand an only be inreased during its progress. One part of a proess's life isexeuted at one exat point of simulation time whih does not hange duringthe exeution. All parts of all proesses' lives are merged together and arrangedaording to the value of their simulation time.



The exeution of the simulation is divided into steps. One step orresponds tothe exeution of one seleted proess's part, having its own value of simulationtime (not neesarrily unique). The exeution is fully under the ontrol of theurrently exeuted proess, i.e. no other proess an interrupt or postpone theexeution.All proesses share a alendar where events are stored. An event is an objetholding information about a proess's life part; this information ontains theproess's identi�ation and the value of simulation time at whih the life part issheduled.In order to divide their lives into parts, proesses use reativation routineswhih are able to establish reativation points in the ode of their lives. Twokinds of reativation routines and reativation points an be distinguished:1. A passivating routine (passivate) terminates the urrent simulation stepwithout adding any new event to the alendar; therefore, the proess willnot be ativated anymore unless another proess ativates it expliitely.2. A temporarily passivating routine (hold(�t)) terminates the urrent simula-tion step and adds a new event to the alendar. This auses the proess tobe automatially restarted in the future, after �t time units.3 Design DeisionsThe main goal of J-Sim was to provide a modern, easy-to-learn, and easy-to-usealternative to C-Sim (see [2℄ and [3℄), existing sine 1995. C-Sim is written inANSI C and therefore is not objet oriented. The user has to use some speialonstruts (maros) to de�ne a proess's life or an element of a queue and hemust be aware of some unusual features, e.g. aess to variables of a proess.Proess swithing is implemented by using long jumps1.J-Sim uses Java threads for implementation of proesses (one thread perproess) and synhronization routines wait() and notify() to ontrol theirativity. The built-in support for onurrent programming was one of the mostimportant arguments why Java was seleted as the implemetation language,together with its platform independene and objet orientation.Most similar tools written in Java (see [5℄, [6℄, and [7℄) are also based onJava threads, however, they are more omplex and thus probably more diÆultto learn.4 J-Sim Core ClassesAll J-Sim lasses (exept for GUI lasses) are loated in the pakage namedz.zu.fav.kiv.jsim. It is neessary to import them at the beginning of everyprogram using J-Sim. In this artile, only the most important lasses will bepresented.1 setjmp() and longjmp() funtions



4.1 The JSimSimulation ClassJSimSimulation instanes represent theoretial simulation models where var-ious number of proesses and queues an be inserted. A alendar (instane ofJSimCalendar) is owned by every simulation objet, where events reated bythe simulation's proesses are inserted. During one simulation step, exatly oneevent is interpreted and destroyed afterwards.To the user, the simulation objet o�ers the possibility of exeuting one sim-ulation step by providing the step() method. During the exeution, the threadalling this method (usually the main thread of the appliation) is suspendedand it is reativated as soon as the step �nishes. Therefore, there is always onerunning thread only.4.2 The JSimProess ClassThe JSimProess lass is a `template' for user proesses. A method, alledlife(), is introdued in JSimProess, whih ontains the ode representingbehavior of a proess. This method is initially empty and should be overwrittenin user's sublasses.There are four prinipal methods whih an be used for proess shedulingand swithing: passivate(), hold(), ativate(), and anel().1. passivate() implements the passivating routine desribed above.2. hold() implements the temporarily passivating routine desribed above.3. The ativate()method inserts a new event into the alendar and thereforeassures that the alling proess will get ontrol in future. The method takesone parameter: the absolute simulation time of ativation.4. The anel() method deletes all proess's events from the alendar. If theproess is passive, it will not be woken up anymore unless ativated againby another proess.4.3 The JSimHead and JSimLink ClassesThe JSimHead lass is an equivalent of Simula's HEAD. It represents the head ofa queue where objets of various types an be inserted. However, the lass doesnot provide any methods for insertion or removal of data elements. Instead, thedata to be inserted into a queue has to be wrapped by an instane of JSimLink,J-Sim's equivalent of LINK, whih is able to insert/remove itself into/from aqueue. JSimHead's useful funtions are: empty(), ardinal(), first(), last(),and lear() already known from Simula, and statistis funtions getLw() andgetTw(), returning the mean queue length LW and the mean waiting time inqueue TW , respetively.An instane of the JSimLink lass an be inserted at most into one queue,using one of the following methods: into(), follow(), and preede(). The �rstone takes a queue as its argument while the others use another element, alreadypresent in a queue, to insert the aller into the same queue, either before or afterthe argument. A JSimLink objet an remove itself from a queue by invokingits out() method.



5 Computing an Open Queueing Network Statistis withJ-SimLet's show the possibilities of J-Sim on an example of a simple queueing network,depited in �gure 1.
���� �������� ����? - ? -- -6 - -6-6
Soure 1�1 Soure 2�2�1 �2Departure Departure1� p1p1 1� p2p2

Fig. 1. An Open Queueing NetworkThe network ontains two servers, eah of them has a FIFO queue wheretransations waiting to be servied are put. The transations (oming from twoindependent soures) enter the system at two input points and may leave itat two output points, after being served. We assume exponentially distributedrandom arrival time in the input streams of transations and exponentially dis-tributed random servie time of both servers. The orresponding parameters ofthe simulation model are then as follows: �i is the mean frequeny of the ith in-put stream (and the parameter of the exponential distribution of arrival time),�i is the parameter of the exponential distribution of the ith server's servietime, pi is the probability of transation departure after being served in node i(and with omplementary value 1� pi, the transation passes into node 3� i).5.1 Theoretial SolutionLet's assume that the parameters of the network are set to the following values:�1 = �2 = 1.0, �1 = �2 = 0.4, and p1 = p2 = 0.5. To �nd the mean frequeniesof the internal ow of both servers (�i) under steady state onditions, we mayuse the model depited in �gure 2.The two irles at the bottom stand for the servers, the two upper irlesrepresent the outside environment where the transations are generated andwhere they `return' after being disarded. Obviously, p0A1 and p0B2 are equal



���� �������� �����1 �2�0A �0B? 6 ? 6-� p12p21p0A1 p20Bp10A p0B2
Fig. 2. Model of the Servers' Internal Flowto 1 and �0A and �0B are equal to �1 and �2, respetively. The probabilitiespij of transition from node i to node j an be expressed using the values from�gure 1: p12 = p1, p21 = p2, p10A = 1� p1, and p20B = 1� p2.Now we an proeed with �nding �i from the following system of linearequations: �1 = p0A1 � �0A + p21 � �2�2 = p0B2 � �0B + p12 � �1After solving this system, we get: �1 = �2 = 0.8. Subsequently, we anompute the average load of both servers: �i = �i�i . Beause �1 = �2 = 0.8, bothservers are in steady state. Therefore, we an proeed with omputing otherharateristis for every server: the mean number of transations waiting forservie (LW = �21�� ), the mean time in the queue (TW = LW� ), the mean numberof transations being served (LS = �� ), the mean time of servie (TS = 1� ), themean number of transations in the whole server (LQ = �1�� or LQ = LW +LS),and the mean response time (TQ = LQ� or TQ = TW + TS).Then, the mean number of transations in the whole system an be omputedas LQ = LQ1 +LQ2 and the mean response time as TQ = LQ�0A+�0B . The resultsare shown in table 1.Table 1. Theoretial Results { Charateristis of the Open Queueing Network fromFigure 1 � � LW TW LS TS LQ TQServer 1 0.8 0.8 3.2 4.0 0.8 1.0 4.0 5.0Server 2 0.8 0.8 3.2 4.0 0.8 1.0 4.0 5.0Network � � � � � � 8.0 10.0



5.2 Solution Using J-SimWe hoose the lassi approah to onstrut the model of the network { theservers and the soures of transations will be ative objets while the transa-tions will be passive.Complete soure texts an be found in diretory Examples/08 Queueing-Networks of the distribution arhive. (However, the values of the netwok's pa-rameters have been hanged.)Transations. A transation is a simple passive objet, holding no data exeptof the time of its reation. See �le Transation.java for details.Soures of Transations. Being an ative objet, the soure has to be inher-ited from JSimProess. It is assigned a queue where it stores the transationsgenerated during its life. See �le Generator.java for omplete soure text.publi lass Generator extends JSimProess { // ...proteted void life() { // ...while (true) {link = new JSimLink(new Transation(myParent.getCurrentTime()));link.into(queue); if (queue.getServer().isIdle())queue.getServer().ativate(myParent.getCurrentTime());hold(JSimSystem.negExp(lambda)); } /* ... */ }}}Servers. Every server has a queue to take transations from. If the queue isempty, the server passivates itself and it is restarted later when a transationis inserted into its queue. After a transation is taken out, the server proessesit (simulated by hold()) and puts it into the other queue or throws away. Thenumber of transations (ounter) and the time spent by them in the system(transTq) is registred for every server. Therefore, the mean response time of thewhole network an be easily omputed. See Server.java for more details.publi lass Server extends JSimProess { // ...proteted void life() { // ...while (true) {if (queueIn.empty()) passivate(); else {hold(JSimSystem.negExp(mu));link = queueIn.first();if (JSimSystem.uniform(0.0, 1.0) > p) { // throw awayt = (Transation) link.getData(); ounter++;transTq += myParent.getCurrentTime() - t.getCreationTime();link.out(); link = null; }else { /* insert again */ link.out(); link.into(queueOut);if (queueOut.getServer().isIdle())queueOut.getServer().ativate(myParent.getCurrentTime());}}} /* ... */ }}



Running the Simulation. First, a simulation objet has to be reated. Then,two queues, two generators and two servers are reated and the servers areassigned to the queues. Finally, the generators have to be ativated. The serversare ativated automatially as soon as a transation is inserted into their emptyinput queue.The simulation an be exeuted step-by-step when its step() method isrepeatedly invoked, e.g. in a while yle. Here, we let the simulation run untilthe simulation time reahes 1000 time units. Alternatively, we ould use a foryle and speify the number of steps to be exeuted.while ((simulation.getCurrentTime() < 1000.0) &&(simulation.step() == true)) ;Results. The program was run �ve times and the results shown in table 2were obtained. The last two olumns ontain the average values obtained bythe statistis funtions getLw() and getTw() and the theoretial results fromsetion 5.1.Table 2. Results Obtained by the Program { Charateristis of the Open QueueingNetwork from Figure 11 2 3 4 5 Average Theoretial ResultLW1 3.32 2.91 2.95 4.04 2.56 3.16 3.20TW1 4.27 3.70 3.70 4.92 3.38 3.99 4.00LW2 3.40 6.25 3.46 5.01 2.79 4.18 3.20TW2 4.38 7.52 4.21 6.25 3.74 5.22 4.00TQ 8.79 11.79 7.97 11.09 7.39 9.41 10.00If the program is run more than �ve times or if we exeute more simulationsteps, we will probably get more aurate results, mainly onerning the queueno. 2.6 Model of a Simple Parallel AlgorithmAs another example, a model of a simple parallel algorithm exeuted at a shared-memory multiproessor is presented. Several proesses (with the same program)periodially utilize a blok of shared data. A semaphore with onventional P()and V() operations is used to synhronize aess to the data. The synhronizedpart of the program exeuted with all the proesses is denoted as ritial setion.The program of every proess ontains two main parts repeated in a loop: ablok of loal omputation and a blok where the shared data is updated insidethe ritial setion. We are given two parameters onerning time onditionsof the program: Tout (or 1=�, respetively) denotes the mean time spent byproess outside the ritial setion and TCS (or 1=�) denotes the mean time



inside the ritial setion. We assume exponentially distributed random timespent by proess inside eah blok.Our goal is to �nd out the mean time of all proesses' loops (taking intoaount the delays aused by the ritial setion) and the ratio between onit-free-program frequeny (as if there were no ritial setion) and the mean fre-queny of program with onits2.Let's say that there are two proesses in the system (N = 2), � = 0:5, and� = 1:0.6.1 Theoretial SolutionFirst, we should onstrut a Markov-hain-based model of the system to om-pute the probabilities of di�erent states of the system. The model is depited in�gure 3.
���� ���� ����0 1 2- -�� 2� �� �Fig. 3. Markov-Model of Two-Proess System with a Critial SetionIn state 0, both proesses are omputing loally. In state 1, one proess isinside the ritial setion and the other one is outside. In state 2, one proess isinside the ritial setion and the other one is bloked inside the P() operationof the semaphore guarding the ritial setion.Sine the system has no absorption states and the time spent in all states isexponentially distributed with parameter � (or 2� or �), the following system oflinear equations an be onstruted:2� � p0 = � � p1� � p1 + � � p1 = 2� � p0 + � � p2� � p2 = � � p1p0 + p1 + p2 = 1Solving suh system, we get: p0 = 0:4, p1 = 0:4, and p2 = 0:2. Then, the fre-queny of loops (taking into aount the possible onits) and its orrespondingmean time an be evaluated asfonf = p1 � �+ p2 � �2 = 0:4 � 1 + 0:2 � 12 = 0:3; Tonf = 1fonf = 10:3 = 3:�32 A onit oures when a proess invokes P() to enter the ritial setion but theritial setion is already oupied by another proess.



Without any delays aused by the ritial setion, f and T would befno onf = 11=�+ 1=� = 12 + 1 = 0:�3; Tno onf = 1fno onf = 10:�3 = 3Therefore, the performane derease aused by the ritial setion isDerease = TonfTno onf = 3:�33:0 = 1:�16.2 Solution Using J-SimSemaphores. Sine data protetion failities, suh as semaphores, are not ne-essary in non-onurrent environment, J-Sim does not o�er them yet3. Therefore,we need to onstrut the semaphores as our own lass. A semaphore has an in-teger ounter (usually set to 1 at the beginning) and a queue where blokedproesses are put.publi lass Semaphore {private int ounter; private JSimHead queue; // ...The P operation derements the ounter if it is positive or bloks (passivates)the alling proess and inserts it at the end of the queue if it is non-positive:if (ounter > 0) ounter--; else { // ...link = new JSimLink(allingProess); link.into(queue);allingProess.passivate2(); } // else, ...The V operation inrements the ounter if the queue is empty (no otherproess is entering the ritial setion) or takes a bloked proess from the queueand restarts it. V():if (queue.empty()) ounter++; else {firstLink = queue.first();firstProess = (SemProess) firstLink.getData();firstProess.ativate(myParent.getCurrentTime());firstLink.out(); firstLink = null; } // else, ...Proesses. Proesses are ative objets, therefore they have to be inheritedfrom JSimProess. They share an instane of SharedData (updated inside theritial setion) and a semaphore { instane of Semaphore.publi lass SemProess extends JSimProess { // ...private Semaphore sem; private SharedData data; // onstr., ...The life() method is very simple. An in�nite while yle ontains boththe `loal blok' and the ritial setion proteted by the semaphore. Real om-putation in every blok is replaed with a all to hold() with an exponentiallydistributed random time as parameter. life():3 They will be inluded in a future version of J-Sim.



while (true) {/* Loal part */ myResult = JSimSystem.negExp(0.1);hold(JSimSystem.negExp(lambda));/* Critial setion */ sem.P(this);data.setResult(0.99*data.getResult() + 0.01*myResult);data.inCountCS(); hold(JSimSystem.negExp(mu));sem.V(); } // while, ...Results. The simulation was run �ve times, with simulation time limit of 30000time units. The results are shown in table 3.Table 3. Results Obtained by the Program { Charateristis of the Two-Proess Sys-tem with One Critial Setion1 2 3 4 5 Average Theor. ResultMean number of loops 8951 9027 9061 9064 8966 9014 9000Mean time of loops 3.3515 3.3233 3.3109 3.3098 3.3458 3.3283 3:�3Mean freq. of loops 0.2984 0.3009 0.3020 0.3021 0.2989 0.3005 0.3Performane derease 1.1172 1.1078 1.1036 1.1033 1.1153 1.1094 1:�1ConlusionIn this artile, some basi fats about J-Sim have been presented, inludingits theoretial bakground. Being written in Java, a popular and easy-to-learnlanguage, J-Sim should beome at least as wide-spread as C-Sim, its predeessor.In the distribution pakage, there are inluded soure texts, ompiled lasses,doumentation and many examples. Today, J-Sim is a fully funtional librarywhih has been tested thoroughly, e.g. on the examples inluded in the pakage.J-Sim is available for free at [1℄.Referenes1. J-Sim Home Page: www.j-sim.zu.z2. C-Sim Home Page: www.-sim.zu.z3. Hlavi�ka, J. - Raek, S. - Herout, P.: C-Sim v.4.1, Researh Report DC-99-09, DCSECTU Prague Publishing, Czeh Republi, 19994. Holmevik, J.R.: The History of Simula,java.sun.om/people/jag/SimulaHistory.html5. Desmo-J Home Page: www.desmoj.de6. simjava Home Page: www.ds.ed.a.uk/home/hase/simjava7. sim tool Home Page: monar.web.ern.h/MONARC/sim toolAknowledgementThis researh was supported by the grant of the Ministry of Eduation of theCzeh Republi, No. MSM-235200005 { Information Systems and Tehnologies.


