
COMP9414: Artificial Intelligence

Propositional Logic:
Automated Reasoning

Wayne Wobcke

Room J17-433
wobcke@cse.unsw.edu.au

Based on slides by Maurice Pagnucco

COMP9414 c©UNSW, 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 1

Propositional Logic
� So far we have considered propositional logic as a knowledge

representation language

� We can write sentences in this language (syntax) with some logical
structure

� We can define the interpretations of these sentences using truth tables
(semantics)

� What remains is reasoning; to draw new conclusions from what we
know (proof system) and to do so using a computer to automate the
process

� References:
I Ivan Bratko, Prolog Programming for Artificial Intelligence,

Addison-Wesley, 2001. (Chapter 15)

I Stuart J. Russell and Peter Norvig, Artificial Intelligence: A
Modern Approach, Prentice-Hall International, 1995. (Chapter 6)

COMP9414 c©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 2

Overview

� Proof systems (including soundness and completeness)

� Normal Forms

� Resolution

� Refutation Systems

� Correctness of the resolution rule — soundness and completeness

� Conclusion

COMP9414 c©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 3

What is a Logic?

� A logic consists of

1. A formal system for expressing knowledge about a domain
consisting of
Syntax Set of legal sentences (well formed formulae)
Semantics Interpretation of legal sentences

2. A proof system — a set of axioms plus rules of inference for
deducing sentences from a knowledge base

COMP9414 c©UNSW, 2004 Generated: 31 March 2004



COMP9414, Wednesday 31 March, 2004 Propositional Logic 4

Mechanising Proof

Question: Assuming knowledge can be captured using propositional
logic, how do we automate reasoning (i.e. perform inference)?

� One answer: a proof of a formula from a set of premises is a sequence
of steps in which any step of the proof is:
1. An axiom or premise

2. A formula deduced from previous steps of the proof using some
rule of inference

The last step of the proof should deduce the formula we wish to prove

� This is intended to formally capture the notion of proof that is
commonly applied in other fields (e.g. mathematics)

� We use the notation S ` P to denote that the set of formulae S “prove”
the formula P. Alternatively, we say that P follows from (premises) S

COMP9414 c©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 5

Soundness and Completeness

� A logic is sound if it preserves truth (i.e. if a set of premises are all
true, any conclusion drawn from those premises must also be true)

� Technically, a proof system ` is sound if whenever S ` P (P follows
from S using the proof system), S |= P (P is entailed by S, e.g. using
truth tables)

� A logic is complete if it is capable of proving all consequences of any
knowledge base

� Technically, a proof system ` is complete if whenever S |= P (P is
entailed by S, e.g. using truth tables), S ` P (P follows from S using
the proof system)

� A logic is decidable if there is a mechanical procedure (computer
program) which when asked whether S ` P, can always answer ‘yes’
or ‘no’ (correctly)

COMP9414 c©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 6

Resolution

� Another type of proof system based on refutation

� Better suited to computer implementation than systems of axioms and
rules (can give correct ‘no’ answers)

� Generalizes to first-order logic (see next week)

� The basis of Prolog’s inference method

� To apply resolution, all formulae in the knowledge base and the query
must be in clausal form (c.f. Prolog clauses)

COMP9414 c©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 7

Normal Forms

� A literal is a propositional letter or the negation of a propositional
letter

� A clause is a disjunction of literals

� Conjunctive Normal Form (CNF) — a conjunction of clauses, e.g.
(P∨Q∨¬R)∧ (¬S∨¬R)

� Disjunctive Normal Form (DNF) — a disjunction of conjunctions of
literals, e.g. (P∧Q∧¬R)∨ (¬S∧¬R)

� Every propositional logic formula can be converted to CNF and DNF

COMP9414 c©UNSW, 2004 Generated: 31 March 2004



COMP9414, Wednesday 31 March, 2004 Propositional Logic 8

Conversion to Conjunctive Normal Form

� Eliminate ↔ rewriting P ↔ Q as (P → Q)∧ (Q → P)

� Eliminate → rewriting P → Q as ¬P∨Q

� Use De Morgan’s laws to push ¬ inwards:

I rewrite ¬(P∧Q) as ¬P∨¬Q

I rewrite ¬(P∨Q) as ¬P∧¬Q

� Eliminate double negations: rewrite ¬¬P as P

� Use the distributive laws to get CNF:

I rewrite (P∧Q)∨R as (P∨R)∧ (Q∨R)

I rewrite (P∨Q)∧R as (P∧R)∨ (Q∧R)

COMP9414 c©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 9

Example

� ¬(P → (Q∧R))

� ¬(¬P∨ (Q∧R))

� ¬¬P∧¬(Q∧R)

� ¬¬P∧ (¬Q∨¬R)

� P∧ (¬Q∨¬R)

� Two clauses: P, ¬Q∨¬R

COMP9414 c©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 10

Resolution Rule of Inference

Resolution Rule

A∨B ¬B∨C

A∨C

l
l

l
l

l
l

ll

,
,

,
,

,
,

,,

� where B is a propositional letter and A and C are clauses (possibly
empty)

� A∨C is the resolvent of the two clauses

COMP9414 c©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 11

Resolution Rule: Key Idea

� Consider A∨B and ¬B∨C

I if B is True, ¬B is False and truth of second formula depends only
on C

I if B is False, truth of first formula depends only on A

� Only one of B, ¬B is True, so if both A∨B and ¬B∨C are True,
either A or C is True, i.e. A∨C is True

COMP9414 c©UNSW, 2004 Generated: 31 March 2004



COMP9414, Wednesday 31 March, 2004 Propositional Logic 12

Applying Resolution

� The resolution rule is sound (resolvent entailed by two ‘parent’
clauses)

� How can we use the resolution rule? One way:

I Convert knowledge base into clausal form

I Repeatedly apply resolution rule to the resulting clauses

I A query A follows from the knowledge base if and only if each of
the clauses in the CNF of A can be derived using resolution

� There is a better way . . .

COMP9414 c©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 13

Refutation Systems

� To show that P follows from S (i.e. S ` P) using refutation, start with
S and ¬P in clausal form and derive a contradiction using resolution

� A contradiction is the “empty clause” (a clause with no literals)

� The empty clause � is unsatisfiable (always False)

� So if the empty clause � is derived using resolution, the original set
of clauses is unsatisfiable (never all True together)

� That is, if we can derive � from the clausal forms of S and ¬P, these
clauses can never be all True together

� Hence whenever the clauses of S are all True, at least one clause from
¬P must be False, i.e. ¬P must be False and P must be True

� By definition, S |= P (so P can correctly be concluded from S)

COMP9414 c©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 14

Applying Resolution Refutation

� Negate query to be proven (resolution is a refutation system)

� Convert knowledge base and negated conclusion into CNF and extract
clauses

� Repeatedly apply resolution until either the empty clause (contradic-
tion) is derived or no more clauses can be derived

� If the empty clause is derived, answer ‘yes’ (query follows from
knowledge base), otherwise answer ‘no’ (query does not follow from
knowledge base)

COMP9414 c©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 15

Resolution: Example 1

(G∨H) → (¬J∧¬K), G ` ¬J

Clausal form of (G∨H) → (¬J ∧¬K) is {¬G∨¬J, ¬H ∨¬J, ¬G∨
¬K, ¬H ∨¬K}

1. ¬G∨¬J [Premise]
2. ¬H ∨¬J [Premise]
3. ¬G∨¬K [Premise]
4. ¬H ∨¬K [Premise]
5. G [Premise]
6. J [¬ Conclusion]
7. ¬G [1, 6. Resolution]
8. � [5, 7. Resolution]

COMP9414 c©UNSW, 2004 Generated: 31 March 2004



COMP9414, Wednesday 31 March, 2004 Propositional Logic 16

Resolution: Example 2

P →¬Q, ¬Q → R ` P → R

Recall P → R ≡ ¬P∨R

Clausal form of ¬(¬P∨R) is {P, ¬R}

1. ¬P∨¬Q [Premise]
2. Q∨R [Premise]
3. P [¬ Conclusion]
4. ¬R [¬ Conclusion]
5. ¬Q [1, 3. Resolution]
6. R [2, 5. Resolution]
7. � [4, 6. Resolution]

COMP9414 c©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 17

Resolution: Example 3

` ((P∨Q)∧¬P) → Q

Clausal form of ¬(((P∨Q)∧¬P) → Q) is {P∨Q, ¬P, ¬Q}

1. P∨Q [¬ Conclusion]
2. ¬P [¬ Conclusion]
3. ¬Q [¬ Conclusion]
4. Q [1, 2. Resolution]
5. � [3, 4. Resolution]

COMP9414 c©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 18

Soundness and Completeness Again

� Resolution refutation is sound, i.e. it preserves truth (if a set of
premises are all true, any conclusion drawn from those premises must
also be true)

� Resolution refutation is complete, i.e. it is capable of proving all
consequences of any knowledge base (not shown here!)

� Resolution refutation is decidable, i.e. there is an algorithm
implementing resolution which when asked whether S ` P, can
always answer ‘yes’ or ‘no’ (correctly)

COMP9414 c©UNSW, 2004 Generated: 31 March 2004

COMP9414, Wednesday 31 March, 2004 Propositional Logic 19

Heuristics in Applying Resolution

� Clause elimination — can disregard certain types of clauses

I Pure clauses: contain literal L where ¬L doesn’t appear elsewhere

I Tautologies: clauses containing both L and ¬L

I Subsumed clauses: another clause exists containing a subset of
the literals

� Ordering strategies

I Resolve unit clauses (only one literal) first

I Start with query clauses

I Aim to shorten clauses

COMP9414 c©UNSW, 2004 Generated: 31 March 2004



COMP9414, Wednesday 31 March, 2004 Propositional Logic 20

Conclusion

� We have now investigated one knowledge representation and
reasoning formalism

� This means we can draw new conclusions from the knowledge we
have: we can reason

� Have enough to build a knowledge-based agent

� However, propositional logic is a weak language; there are many
things that cannot be expressed

� To express knowledge about objects, their properties and the
relationships that exist between objects, we need a more expressive
language: first-order logic

COMP9414 c©UNSW, 2004 Generated: 31 March 2004


