
1Comparison Widgets vs. Portlets, December 2012

December, 2012

Comparison
 Widgets vs. Portlets

2Comparison Widgets vs. Portlets, December 2012

Comparison Widgets vs. Portlets

Introduction

This document compares portlets, web widgets, and Backbase
widgets. It consists of two parts: the first part gives some
background about portlets and web widgets, while the second
part focuses on how Backbase widgets improve on both portlets
and ordinary web widgets. Readers familiar with portlets and web
widgets can skip directly to the second section.

Discover
Backbase

Visit our website at:
www.backbase.com

Interesting white papers at:
backbase.com/bank20

Join our free webinars
backbase.com/webinars

Contact us via

discover@backbase.com

3Comparison Widgets vs. Portlets, December 2012

Portlets

What Are Portlets?
“Portlets are web components--like servlets--specifically designed to be aggregated in the

context of a composite page. Usually, many portlets are invoked to in the single request of a

portal page. Each portlet produces a fragment of markup that is combined with the markup of

other portlets, all within the portal page markup.” (from the Portlet Specification, JSR-168).

Decorations and Controls<Title>∂

<Portlet Content>

M m E H

M m E H<Title>∂ M m E H<Title>∂

<Title>∂

<Portlet Content>

M m E H

Portlet Fragment

Portlet Window

Portal Page

<Portlet Content><Portlet Content>

Portlets are pluggable web application components like weather reports, discussion forums,

or stock quotes. They generate HTML markup that is then assembled into a single page. A

server adds CSS stylesheets, cookies, and resources, and delivers the page to a browser.

Portlets allow both static and dynamic binding: portal applications can make portlets available

in a registry at runtime for the user to select and position. Portal servers typically let users

customize pages by rearranging, showing, or hiding portlets, and they provide single sign-on

and role-based personalization.

4Comparison Widgets vs. Portlets, December 2012

Portlets implement a Java interface to the standard portlet API and they can plug into any

standard-compliant portal server: for example, the Java Portlet specification v2.0 (JSR-286)

defines a runtime environment for portlets and the corresponding Java API. While the term

portlet originally designated Java Portlets, other technologies like ASP.NET Web Parts use a

similar model.

import javax.portlet.*;

import java.io.*;

public class HelloWorld extends GenericPortlet {

 public void init (PortletConfig portletConfig) throws UnavailableException,

PortletException {

 super.init(portletConfig);

 }

 public void doView(RenderRequest request, RenderResponse response) throws

PortletException, IOException {

 response.setContentType("text/html");

 PrintWriter writer = response.getWriter();

 writer.println("<p class='wpsPortletText'>Hello Portal World!</p>");

 }

 }

Example Portlet

Portlets

Example: Java source for Hello World portlet (JSR 168):

5Comparison Widgets vs. Portlets, December 2012

<Title>∂ M m E H

M m E H<Title>∂ M m E H<Title>∂

<Title>∂ M m E H

Portlet Windows

A

B C

D

Portal
Server

Portlet
Container

Portlet B

Portlet A

Portlet C

Portlet D

Portal Page

Client Device

<Title>∂ M m E H

M m E H<Title>∂ M m E H<Title>∂

A

B C

Client

<Title>∂ M m E H

M m E H<Title>∂ M m E H<Title>∂

A’

B’ C’

Portal
Portal

Container
Portlets

A B C

Action on B

Wire
between B
and A
exists

New Page

render

processEvent(X)

Resp(event(X))

processAction
The Action
Phase must be
finished before
the render
phase starts

Render requests
are fired in no
specific order.
They may be
fired one after
the other or in
parallel.

Not defined by the Java Portlet Specification

Portlets

What Is a Portal Container?
Portlet containers are the runtime environments where portlets are instantiated, used, and

destroyed. They compose portlet fragments into HTML pages and handle portlet events.

6Comparison Widgets vs. Portlets, December 2012

Portlets

What are JSR-168 and JSR-286?
JSR-168 and JSR-286 are the Java Portlet Specifications. They define a contract between the

portlet container and the portlets, and provide a convenient programming model for Java portlet

developers.

The Java Portlet Specification V1.0 was developed under the Java Community Process (JCP)

as Java Specification Request JSR-168. It introduces the basic portlet programming model with:

• two phases of action processing and rendering that conform to the Model-View-

 Controller pattern;

• portlet modes that enable the portal to advise the portlet on what task it should perform and

what content it should generate;

• window states that indicate the amount of portal page space to be assigned to the

portlet-generated content;

• a portlet data model that allows the portlet to store information about the view, session, and

user customizations;

• a packaging format bundling portlets and other Java EE artifacts to make them deployable

on portal servers;

• integration of different web-based applications supporting the delivery of information and

services.

JSR-286 is the Java Portlet specification v2.0 as developed under the JCP. It was developed to

improve on the shortcomings of JSR-168 and it aligns with WSRP version 2.0.[1]. Some major

features include:[2]

• inter-portlet communication through events and public render parameters;

• dynamically-generated resources served directly through portlets;

• AJAX or JSON data served directly through portlets (in JSR-168, these data had to be

served through servlets outside the portlet context);

• portlet filters and listeners.

7Comparison Widgets vs. Portlets, December 2012

Portlets

What Is WSRP?
Web Services for Remote Portlets (WSRP) “defines a set of interfaces and related semantics

which standardize interactions with components providing user-facing markup, including the

processing of user interactions with that markup. This allows applications to consume such

components as providing a portion of the overall user application without having to write

unique code for interacting with each component”.

The WSRP protocol provides a standard for portlets running remotely across different hosts. It

defines common interfaces to display remote portlets inside the pages of a portal. The portlet

container and the portal interact through SOAP messages.

For example, a web site may use portlets in remote portlet containers to allow registered users

to turn on or off portions of a page, add features, or delete them. Thanks to WSRP, end-users

may not notice that different portlets reside in a remote portlet containers.

Are Portlets Interoperable with Other Technologies?
Java Portlets and ASP.NET Web Parts have similar goals, but are not interoperable. WSRP

addresses this issue at the protocol level by exposing remote portlets as web services.

Communications between the portal server (WSRP consumer) and the portlets (WSRP

producer) occur via SOAP, so developers can use different languages and runtime

frameworks. In practice, however, portlets from different producers are rarely combined

because of different standard implementations.

Can I Use AJAX with Portlets?
Portlets can use AJAX for improved responsiveness and can produce documents that

resemble widgets running in a browser container. However, the portlet specifications mainly

cover the server-side APIs and services, not the HTML and Javascript sent to the browser. As a

result, AJAX solutions are often built in an ad-hoc fashion and are not reusable.

8Comparison Widgets vs. Portlets, December 2012

Portlets

What Are the Main Problems of Using Portlets?
According to Gartner (Report No. G00166378, “Get Ready for the ‘Portlet-Less’ Portal”),

projects using portlets may fail because of:

•	 Budget overruns: portals using portlets are typically expensive and, depending on the type

of portal, can take several months to deploy;

•	 Lack of structure, sub-par content, no connections to relevant applications, or bad user

experience;

•	 Lack of a user experience tailored to the intended audience. Companies might question

why they have to spend significant amounts of money on what seems little different from the

legacy web environment.

•	 Overlapping investments in multiple portals that fail to meet expectations;

•	 Complaints about the user experience, especially when compared to other portals found on

the web. Customers may ask why their portals do not “look like iGoogle”.

9Comparison Widgets vs. Portlets, December 2012

Where Can I Learn More about Portlets?
There are a number of resources online, including:

•	 Wikipedia,

http://en.wikipedia.org/wiki/Portlet

•	 Sunil Patil, What Is a Portlet,

 http://oreilly.com/java/archive/what-is-a-portlet.html

 O’Reilly, September 14, 2005

•	 Stefan	Hepper,	Oliver	Köth,	What’s	new	in	the	Java	Portlet	Specification	V2.0	(JSR	286)?,

 http://www.ibm.com/developerworks/websphere/library/techarticles/0803_hepper/0803_hepper.html

 18 Mar 2008

•	 Stefan	Hepper	and	Stephan	Hesmer,	Introducing	the	Portlet	Specification,	Part	1,

 http://www.javaworld.com/javaworld/jw-08-2003/jw-0801-portlet.html

 JavaWorld.com, 08/01/03

•	 Stefan	Hepper	and	Stephan	Hesmer,	Introducing	the	Portlet	Specification,	Part	2,

 http://www.javaworld.com/javaworld/jw-09-2003/jw-0905-portlet2.html

 JavaWorld.com, 09/05/03

•	 Deepak	Gothe,	Understanding	the	Java	Portlet	Specification	2.0	(JSR	286):	Part	1,

 Overview and Coordination Between Portlets,

 http://developers.sun.com/portalserver/reference/techart/jsr286/jsr286.html

 Oracle Sun Developer Network (SDN), January 2010

•	 Deepak	Gothe,	Understanding	the	Java	Portlet	Specification	2.0	(JSR	286):	Part	2,	Serving

 Resources and Other New Features,

 http://developers.sun.com/portalserver/reference/techart/jsr286/jsr286_2.html

 Oracle Sun Developer Network (SDN), January 2010

•	 Deepak	Gothe,	Understanding	the	Java	Portlet	Specification	2.0	(JSR	286):	Part	3,

 Extensions,

 http://developers.sun.com/portalserver/reference/techart/jsr286/jsr286_3.html

 Oracle Sun Developer Network (SDN), January 2010

•	 Portlets in Action

 http://portlets-in-action.blogspot.nl/

•	 OASIS Web Services for Remote Portlets (WSRP) TC

	 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp

Portlets

10Comparison Widgets vs. Portlets, December 2012

Web Widgets

What Are Web Widgets?
A web widget is a mini-application that can be embedded into third-party sites by any user with

authorship rights on a page (e.g. a webpage, blog, or profile on a social media site).

Widgets can be installed by simply adding some code: for example, Google offers a number

of widgets (called gadgets) that you can add to a page by copying and pasting a <script> tag

into the HTML source code.

The idea of web widgets is not new: embeddable chunks of code have existed since the early

developments of the World Wide Web. Early web widgets provided functions such as link

counters and advertising banners.

What Are W3C Widgets?
W3C defines a widget as “an interactive single purpose application for displaying and/

or updating local data or data on the Web, packaged in a way to allow a single download

and installation on a user’s machine or mobile device. A widget may run as a stand-alone

application (meaning it can run outside of a Web browser)”.

W3C widgets are ZIP packages bundling HTML, cascading stylesheets (CSS), Javascript files,

and other resources. They can be deployed in HTML files with a Multipurpose Internet Mail

Extensions (MIME) type of “application” or “widget”. Once downloaded, they can be re-used

just like installed applications, thereby reducing bandwidth usage.

The W3C “Widget Packaging and Configuration” specification (http://www.w3.org/TR/widgets/)

describes configuring, packaging, and deploying widgets. You can use widgets for small

applications like calendars, weather reports, chats, and more.

The W3C “Widget API Specification” (http://www.w3.org/TR/widgets-apis/) defines an

application programming interface (API) to, for example, access widget metadata or persist

data.

11Comparison Widgets vs. Portlets, December 2012

Web Widgets

Where Can I Learn More about Web Widgets?
•	 ABC, A Brief Widget History,

 http://www.niallkennedy.com/blog/2007/09/widget-timeline.html

•	 W3C Widgets Current Status,

 http://www.w3.org/standards/techs/widgets#w3c_all

•	 Native Web Apps Community Group Home Page,

 http://www.w3.org/community/native-web-apps/

•	 Misconceptions about W3C Widgets,

 http://marcosc.com/wp-content/uploads/2011/10/Misconceptions-about-W3C-Widgets.pdf

•	 Paco Azevedo Mendes, Evaluation of widget-based approaches for developing rich internet

applications,

 http://wiredspace.wits.ac.za/handle/10539/9484

12Comparison Widgets vs. Portlets, December 2012

Web Widgets vs. Portlets

How Are Web Widgets and Portlets Similar?
Portlets and widgets have many similarities:

•	 they both provide a user interface to services running on back-end systems, though there are

cases where they perform some application logic as well;

•	 they can both pass information and context to other portlets or widgets, and consume context

from other components;

•	 end-users and administrators can personalize which portlets and widgets appear on a page,

how they look, and how they behave.

How are Web Widgets and Portlets Different?
Portlets are server-side component models, while widgets are client-side component models that

run in a browser container. Even though portlets can generate markup that runs client-side like a

widget, the portlet specifications mainly cover the server-side APIs and services, not the HTML and

Javascript sent to the browser. Similarly, the widget specification covers the client-side APIs and

services, and not the HTML and Javascript generated server-side.

13Comparison Widgets vs. Portlets, December 2012

Where Can I Learn More about Differences
between Widgets and Portlets?
There is an ongoing discussion on the web about these differences. You may check some of the

following blog entries:

•	 Rob Will, Making Sense of Portlets and Widgets,

 https://www.ibm.com/developerworks/mydeveloperworks/blogs/WebSpherePortal/entry/

	 making_sense_of_portlets_and_widgets1?lang=en

 Posted on August 11, 2009

•	 David Megginson, Widgets vs. Portlets,

 http://quoderat.megginson.com/2008/07/14/widgets-vs-portlets/

 Posted on July 14, 2008

•	 Michael Porter, Widgets vs Portlets, Portals - Perspectives on Collaboration and the

 Connected Enterprise,

	 http://blogs.perficient.com/portals/2010/06/16/widgets-vs-portlets/

 June 16th, 2010

•	 Tycho Luyben, Hot or Not: - Widgets in the Java portlet world,

	 http://www.theserverside.com/news/thread.tss?thread_id=46071

 July 27, 2007

•	 Technologie Roadmap: Portlet JSR286 vs Widget/Gadget,

 http://programmers.stackexchange.com/questions/52722/technologie-roadmap-portlet-

 jsr286-vs-widget-gadget

•	 Gadgets and Widgets as an alternative to Portlets,

 http://apoorv.info/2008/12/05/gadgets-and-widgets-as-an-alternative-to-portlets/

 December 2008

•	 What	is	the	difference	between	a	portlet	and	a	servlet?,

	 http://stackoverflow.com/questions/1480528/what-is-the-difference-between-a-portlet-and-

 a-servlet

	 StackOverflow,	2009

•	 Jason Wyatt, iWidgets: Kinda Like Portlets,

 http://jasonwyatt.tumblr.com/post/200237967/iwidgets-kinda-like-portlets

 September 29, 2009

Web Widgets vs Portlets

14Comparison Widgets vs. Portlets, December 2012

The Backbase Approach

The previous section discussed strengths, weaknesses, and
use cases of portlets and web widgets. This section focuses
on Backbase Portal, its widgets, and how they compare to web
widgets and portlets.

Widgets, in particular W3C widgets, are applications that can run independently or within web

pages. This flexibility often goes unnoticed, but it comes at the cost of complex standards:

the W3C widget standard has no less than 54 requirements. Enabling widgets to work together

with a coherent look-and-feel may be challenging: modifying the web services from which the

widgets receive data requires modifying the widgets as well.

Portlets can adapt complex content more easily because they run server-side. However,

their comprehensive APIs add layers of complexity as well, as do the standards that regulate

instance life-cycle management, inter-portlet communication, etc. In order to reduce

complexity, portlet implementations are seldom fully standard-compliant, and portlets from

different vendors are rarely compatible. Finally, portlets do not standardize rich client and rich

user experience.

The Backbase Portal approach combines the best ideas from web widgets and portlets. It

offers server-side integration and adaptation, reusing some ideas of portlets, but comes with

both client and server APIs, doing away with much of the complexity of web widgets and

portlets. The Backbase Portal widget model comes with the following benefits over portlets and

web widgets:

•	 More options. Backbase Portal can aggregate applications in the browser (like ordinary

web widgets), on the server (like portlets), or combine both approaches. Backbase Portal

offers a number of options ranging from pure server-side rendering, where HTML code is

generated server-side and sent to the browser, to pure client-side rendering, where the

browser downloads individual widgets and constructs the page.

•	 Leanness. Backbase Portal is a compact product. Backbase applies lean principles to

eliminate waste and only include the functionality that customers really need; it stands out

in the industry as a lean portal solution based on widgets and Web Oriented Architecture

(WOA).

15Comparison Widgets vs. Portlets, December 2012

The Backbase Approach

•	 Easy integration. Backbase Portal relies on REST-oriented approaches for simple and

future-proof integration with existing systems. REST orientation uses open standards to

increase interoperability with other products.

•	 Better alignment of business and IT. Backbase Portal puts both business users and

developers in control of application development. Developers have full control over the

development of services and widgets, and business people can use Backbase Portal

Manager to add widgets, configure pages, and quickly add value and business insights

to the portal site. Compare this to normal portlet and widget engines, where usually only

developers and administrators can make changes.

The rest of this section compares the Backbase widget model to web widgets and portlets

along the following dimensions:

•	 Rendering and application composition

•	 Interoperability

•	 Server requirements

•	 Back-end service adaptation and augmentation

•	 Multi-device support

•	 Performance

•	 Inter-widget/portlet communication and common authentication/authorization

•	 User experience

16Comparison Widgets vs. Portlets, December 2012

The Backbase Approach

Rendering and Application Composition
Portlets typically assemble HTML fragments into single pages, add resources like CSS

stylesheets and cookies, and deliver the page to the client browser. Some client-side processing

is possible, but portlet standards are mainly concerned with server-side APIs.

Web widgets are, in essence, web pages embedded in larger web pages, generally within

iFrames. They receive content via separate HTTP connections and have their own resources.

The browser composes the final pages.

Backbase Portal uses a more elaborate GUI component model than web widgets and portlets:

portals are organized into pages, pages include one or more - possibly nested - containers,

and containers include widgets. Depending on the particular settings and implementation,

developers can decide whether the final composition takes place on the portal server, in the

browser, or both. Widgets can share resources across the whole page. Finally, Backbase

widgets do not use iFrames.

Interoperability
Portlets loosely follow a range of protocols and standards like JSR-168, JSR-286, and WSRP. In

practice, however, different implementations of portlet standards are rarely compatible.

Web widgets normally use REST-oriented standards, and exchange messages in XML, JSON,

HTML, or other simple text formats. Integration with custom or more complex protocols like

SOAP is usually difficult and requires some server-side adaptations.

Backbase Portal mainly uses open REST-oriented standards like HTTP, XML, or JSON. REST-

oriented solutions have several advantages: they are simple, standard-based, easy to adopt,

and can use HTTP cache and proxy servers to handle high loads. For more complex needs, the

Backbase Mashup Services module uses custom data providers to make custom protocols and

data structures available to Backbase widgets.

17Comparison Widgets vs. Portlets, December 2012

The Backbase Approach

Server Requirements
Portlets require installation and maintenance of specialized and often expensive portlet

containers.

Web widgets do not usually require special servers.

Backbase Portal requires Portal Server, but its basic footprint is small, and many of its

components are optional. Backbase widgets are simpler and more powerful than pure widget

solutions. The Backbase Mashup Services module offers proxying, content transformation,

and caching services to overcome the same-origin policy; it provides widgets with content in

appropriate formats (like JSON), and improves performance.

Back-End Service Adaptation and Augmentation
Portlets can add server logic to augment and adapt back-end services, but this requires

adapting the data to the Portlet APIs. Web widgets usually offer data that requires little

processing, like RSS feeds, and do not require complex logic or complex data operations.

Backbase Portal provides a number of options depending on how much additional server-side

logic is required. In the simplest case, Backbase widgets can access remote servers directly or

through a simple proxy. Alternatively, Backbase Portal Mashup Services enables a range of back-

end service augmentations, adaptations, and transformations. This makes widgets lighter than in

the case of pure client-side data processing.

Multi-Device Support
Rendering portlets on multiple devices requires server-side processing of user agent information.

Web widgets, instead, generally need to access the browser API to support multi-device

rendering. Backbase Portal offers a flexible, high-level, declarative way to specify multi-device

rendering. Each Backbase Portal item (page, container, or widget) can have different templates

for different devices. The portal server selects the right template at runtime depending on the

user device, so that Backbase widgets do not have to include any special logic for multi-device

rendering.

18Comparison Widgets vs. Portlets, December 2012

The Backbase Approach

Performance
Portlets employ a server-side component model. While they can use AJAX, the rendering and

processing normally happen server-side.

Web widgets employ a client-side component model. They normally consume more client

resources, because they offload the processing from the server to the client. They also open

more HTTP connections because they use AJAX to communicate with the server.

Backbase Portal is not biased towards any of these options, but enables the flexible

configuration of client/server processing balance: when rendering client-side, it uses AJAX

extensively; when rendering server-side, it makes no AJAX calls at all. It can also combine both

solutions for improved flexibility.

Inter-Widget/Portlet Communication -
Common Authentication/Authorization
Portlets communicate with each other server-side. They use common authentication and

authorization so that users do not have to sign on to each portlet separately.

Web widgets can use the HTML5 postMessage APIs or libraries like the jQuery postMessage

plugin to communicate within a page. Common authentication/authorization is usually more

problematic.

Backbase Portal supports inter-widget communication through a flexible, loosely coupled,

publish-subscribe mechanism shipped with its client library. Backbase widgets can still use

other libraries and standard inter-widget communication mechanisms, and they can take

advantage of common authentication/authorization.

19Comparison Widgets vs. Portlets, December 2012

The Backbase Approach

Responsiveness, User Experience, and Accessibility
Portlets normally render a page server-side and deliver it to the client browser. This reduces

responsiveness because each request requires reloading the page. Many portlet products

can render portlets and pages using AJAX for improved responsiveness, but such options are

limited and not standardized.

Web widgets feel more responsive than portlets because they are built through independent

browser calls to server-side services.

Backbase supports modern user experience (UX) and interaction patterns. It enables creating

highly responsive interfaces, but supports pure server-side rendering as well. It enables

developers to select the best approach depending on the bandwidth, server load, and desired

patterns of user interaction. Backbase Portal also supports progressive enhancement - a

strategy for web design that emphasizes accessibility, semantic HTML markup, and external

stylesheet and scripting technologies. Progressive enhancement uses web technologies in a

layered fashion to give everyone access to the basic content and functionality of a web page,

while also providing an enhanced version of the page to those with more advanced browsers

or greater bandwidth.

Learning Curve
The learning curve for widgets is usually lower than for portlets, because widgets have fewer

APIs and use common XML and Javascript technologies, while portlets have a richer, more

comprehensive API, instance life-cycle management, inter-portlet communication, etc. In

general, development time for widgets tends to be shorter as well.

The learning curve for Backbase Portal is between the learning curve for portlets and that

for web widgets. Backbase Portal relies on open standards familiar to many developers, but

requires learning a few Backbase-specific APIs and formats, such as the Backbase Portal

REST API.

20Comparison Widgets vs. Portlets, December 2012

Moscow

Lesnaya Plaza Business Center

125047 Moscow, Russia

4th Lesnoy Pereulok, 4

Phone: +7 495 641 37 70

moscow@backbase.com

Discover
Backbase

Visit our website at:
www.backbase.com

Interesting white papers at:
backbase.com/bank20

Join our free webinars
backbase.com/webinars

Contact us via

discover@backbase.com

North American HQ

350 Broadway, Suite 1107

New York, NY 10013, United States

Toll-Free Number: +1 866 800 8996

Office Number: +1 646-478-7538

sales-us@backbase.com

About Backbase

European HQ

Jacob Bontiusplaats 9

1018 LL Amsterdam

The Netherlands

Phone: + 31 20 465 8888

sales-eu@backbase.com

Singapore

3 Church Street

Level 25 Samsung Hub

Singapore 049483

Phone: (65) 6692-9110

singapore@backbase.com

Backbase delivers portal software that provides a new user
experience layer on top of underlying infrastructure and IT systems.
It gives companies the opportunity to create interactions that link
customers to relevant information and applications that fit their
needs and preferences. With its modern, widget-based architecture
Backbase Portal provides the flexibility and speed to create modern
portals that truly empower the customer.

Unlike most traditional IT portal vendors, Backbase has created a contemporary, business-driven portal

solution that makes portal management easy for e-business professionals. This means faster time to

market and more flexibility to optimize online channels with less IT support.

The unique Backbase approach enables organizations to drive self-service, fuel online revenues, and

turn their online banking channel into a true Customer Experience Platform. Global companies such

as ABN Amro, AIG, Al Rajhi Bank, Costco, GE, Barclays, ING, KPN, Motorola, ViaWest and Visa have

improved their online customer interactions and maximized online customer experience, retention, and

conversion, by leveraging Backbase Portal.

Backbase was founded in 2003 and is privately funded with operations in New York, Amsterdam,

Moscow, and Singapore.

