
PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information.
PDF generated at: Wed, 30 Jan 2013 10:30:59 UTC

KIV/PRO

Contents
Articles

Randomized algorithm 1
Las Vegas algorithm 8
Monte Carlo algorithm 9

References
Article Sources and Contributors 11
Image Sources, Licenses and Contributors 12

Article Licenses
License 13

Randomized algorithm 1

Randomized algorithm
A randomized algorithm is an algorithm which employs a degree of randomness as part of its logic. The algorithm
typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good
performance in the "average case" over all possible choices of random bits. Formally, the algorithm's performance
will be a random variable determined by the random bits; thus either the running time, or the output (or both) are
random variables.
One has to distinguish between algorithms that use the random input to reduce the expected running time or memory
usage, but always terminate with a correct result in a bounded amount of time, and probabilistic algorithms, which,
depending on the random input, have a chance of producing an incorrect result (Monte Carlo algorithms) or fail to
produce a result (Las Vegas algorithms) either by signalling a failure or failing to terminate.
In the second case, random performance and random output, the term "algorithm" for a procedure is somewhat
questionable. In the case of random output, it is no longer formally effective.[1] However, in some cases,
probabilistic algorithms are the only practical means of solving a problem.[2]

In common practice, randomized algorithms are approximated using a pseudorandom number generator in place of a
true source of random bits; such an implementation may deviate from the expected theoretical behavior.

Motivation
As a motivating example, consider the problem of finding an ‘a’ in an array of n elements.
Input: An array of n≥2 elements, in which half are ‘a’s and the other half are ‘b’s.
Output: Find an ‘a’ in the array.
We give two versions of the algorithm, one Las Vegas algorithm and one Monte Carlo algorithm.
Las Vegas algorithm:

findingA_LV(array A, n)

begin

 repeat

 Randomly select one element out of n elements.

 until 'a' is found

end

This algorithm succeeds with probability 1. The running time is random (and arbitrarily large) but its expectation is
upper-bounded by . (See Big O notation)
Monte Carlo algorithm:

findingA_MC(array A, n, k)

begin

 i=1

 repeat

 Randomly select one element out of n elements.

 i = i + 1

 until i=k or 'a' is found

end

If an ‘a’ is found, the algorithm succeeds, else the algorithm fails. After k iterations, the probability of finding an ‘a’
is:

http://en.wikipedia.org/w/index.php?title=Algorithm
http://en.wikipedia.org/w/index.php?title=Randomness
http://en.wikipedia.org/w/index.php?title=Uniform_distribution_%28discrete%29
http://en.wikipedia.org/w/index.php?title=Random_variable
http://en.wikipedia.org/w/index.php?title=Effective_method
http://en.wikipedia.org/w/index.php?title=Pseudorandom_number_generator
http://en.wikipedia.org/w/index.php?title=Array_data_structure
http://en.wikipedia.org/w/index.php?title=Big_O_notation

Randomized algorithm 2

This algorithm does not guarantee success, but the run time is fixed. The selection is executed exactly k times,
therefore the runtime is .
Randomized algorithms are particularly useful when faced with a malicious "adversary" or attacker who deliberately
tries to feed a bad input to the algorithm (see worst-case complexity and competitive analysis (online algorithm))
such as in the Prisoner's dilemma. It is for this reason that randomness is ubiquitous in cryptography. In
cryptographic applications, pseudo-random numbers cannot be used, since the adversary can predict them, making
the algorithm effectively deterministic. Therefore either a source of truly random numbers or a cryptographically
secure pseudo-random number generator is required. Another area in which randomness is inherent is quantum
computing.
In the example above, the Las Vegas algorithm always outputs the correct answer, but its running time is a random
variable. The Monte Carlo algorithm (related to the Monte Carlo method for simulation) completes in a fixed amount
of time (as a function of the input size), but allow a small probability of error. Observe that any Las Vegas algorithm
can be converted into a Monte Carlo algorithm (via Markov's inequality), by having it output an arbitrary, possibly
incorrect answer if it fails to complete within a specified time. Conversely, if an efficient verification procedure
exists to check whether an answer is correct, then a Monte Carlo algorithm can be converted into a Las Vegas
algorithm by running the Monte Carlo algorithm repeatedly till a correct answer is obtained.

Computational complexity
Computational complexity theory models randomized algorithms as probabilistic Turing machines. Both Las Vegas
and Monte Carlo algorithms are considered, and several complexity classes are studied. The most basic randomized
complexity class is RP, which is the class of decision problems for which there is an efficient (polynomial time)
randomized algorithm (or probabilistic Turing machine) which recognizes NO-instances with absolute certainty and
recognizes YES-instances with a probability of at least 1/2. The complement class for RP is co-RP. Problem classes
having (possibly nonterminating) algorithms with polynomial time average case running time whose output is
always correct are said to be in ZPP.
The class of problems for which both YES and NO-instances are allowed to be identified with some error is called
BPP. This class acts as the randomized equivalent of P, i.e. BPP represents the class of efficient randomized
algorithms.

History
Historically, the first randomized algorithm was a method developed by Michael O. Rabin for the closest pair
problem in computational geometry. The study of randomized algorithms was spurred by the 1977 discovery of a
randomized primality test (i.e., determining the primality of a number) by Robert M. Solovay and Volker Strassen.
Soon afterwards Michael O. Rabin demonstrated that the 1976 Miller's primality test can be turned into a
randomized algorithm. At that time, no practical deterministic algorithm for primality was known.
The Miller-Rabin primality test relies on a binary relation between two positive integers k and n that can be
expressed by saying that k "is a witness to the compositeness of" n. It can be shown that
• If there is a witness to the compositeness of n, then n is composite (i.e., n is not prime), and
• If n is composite then at least three-fourths of the natural numbers less than n are witnesses to its compositeness,

and
• There is a fast algorithm that, given k and n, ascertains whether k is a witness to the compositeness of n.
Observe that this implies that the primality problem is in Co-RP.
If one randomly chooses 100 numbers less than a composite number n, then the probability of failing to find such a
"witness" is (1/4)100 so that for most practical purposes, this is a good primality test. If n is big, there may be no

http://en.wikipedia.org/w/index.php?title=Attacker
http://en.wikipedia.org/w/index.php?title=Worst-case_complexity
http://en.wikipedia.org/w/index.php?title=Competitive_analysis_%28online_algorithm%29
http://en.wikipedia.org/w/index.php?title=Prisoner%27s_dilemma
http://en.wikipedia.org/w/index.php?title=Randomness
http://en.wikipedia.org/w/index.php?title=Cryptography
http://en.wikipedia.org/w/index.php?title=Cryptographically_secure_pseudo-random_number_generator
http://en.wikipedia.org/w/index.php?title=Cryptographically_secure_pseudo-random_number_generator
http://en.wikipedia.org/w/index.php?title=Quantum_computer
http://en.wikipedia.org/w/index.php?title=Quantum_computer
http://en.wikipedia.org/w/index.php?title=Monte_Carlo_method
http://en.wikipedia.org/w/index.php?title=Markov%27s_inequality
http://en.wikipedia.org/w/index.php?title=Computational_complexity_theory
http://en.wikipedia.org/w/index.php?title=Probabilistic_Turing_machine
http://en.wikipedia.org/w/index.php?title=Turing_machine
http://en.wikipedia.org/w/index.php?title=Complexity_class
http://en.wikipedia.org/w/index.php?title=RP_%28complexity%29
http://en.wikipedia.org/w/index.php?title=Decision_problem
http://en.wikipedia.org/w/index.php?title=Polynomial_time
http://en.wikipedia.org/w/index.php?title=ZPP_%28complexity%29
http://en.wikipedia.org/w/index.php?title=Bounded-error_probabilistic_polynomial
http://en.wikipedia.org/w/index.php?title=P_%28complexity%29
http://en.wikipedia.org/w/index.php?title=Michael_O._Rabin
http://en.wikipedia.org/w/index.php?title=Closest_pair_of_points_problem
http://en.wikipedia.org/w/index.php?title=Closest_pair_of_points_problem
http://en.wikipedia.org/w/index.php?title=Computational_geometry
http://en.wikipedia.org/w/index.php?title=Solovay-Strassen_primality_test
http://en.wikipedia.org/w/index.php?title=Primality_test
http://en.wikipedia.org/w/index.php?title=Robert_M._Solovay
http://en.wikipedia.org/w/index.php?title=Volker_Strassen
http://en.wikipedia.org/w/index.php?title=Miller-Rabin_primality_test
http://en.wikipedia.org/w/index.php?title=Deterministic_algorithm
http://en.wikipedia.org/w/index.php?title=Prime_number
http://en.wikipedia.org/w/index.php?title=RP_%28complexity%29
http://en.wikipedia.org/w/index.php?title=Random

Randomized algorithm 3

other test that is practical. The probability of error can be reduced to an arbitrary degree by performing enough
independent tests.
Therefore, in practice, there is no penalty associated with accepting a small probability of error, since with a little
care the probability of error can be made astronomically small. Indeed, even though a deterministic polynomial-time
primality test has since been found (see AKS primality test), it has not replaced the older probabilistic tests in
cryptographic software nor is it expected to do so for the foreseeable future.

Applications

Quicksort
Quicksort is a familiar, commonly used algorithm in which randomness can be useful. Any deterministic version of
this algorithm requires O(n2) time to sort n numbers for some well-defined class of degenerate inputs (such as an
already sorted array), with the specific class of inputs that generate this behavior defined by the protocol for pivot
selection. However, if the algorithm selects pivot elements uniformly at random, it has a provably high probability of
finishing in O(n log n) time regardless of the characteristics of the input.

Randomized incremental constructions in geometry
In computational geometry, a standard technique to build a structure like a convex hull or Delaunay triangulation is
to randomly permute the input points and then insert them one by one into the existing structure. The randomization
ensures that the expected number of changes to the structure caused by an insertion is small, and so the expected
running time of the algorithm can be upper bounded. This technique is known as randomized incremental
construction.[3]

Verifying matrix multiplication
Input: Matrix A ∈ Rm × p, B ∈ Rp × n, and C ∈ Rm × n.
Output: True if C = A · B; false if C ≠ A · B
We give a Monte Carlo algorithm to solve the problem.[4]

 begin

 i=1

 repeat

 Choose r=(r
1
,...,r

n
) ∈ {0,1}n at random.

 Compute C · r and A · (B · r)

 if C · r ≠ A · (B · r)
 return FALSE

 endif

 i = i + 1

 until i=k

 return TRUE

 end

The running time of the algorithm is .

Theorem: The algorithm is correct with probability at least .

We will prove that if then .

http://en.wikipedia.org/w/index.php?title=AKS_primality_test
http://en.wikipedia.org/w/index.php?title=Cryptography
http://en.wikipedia.org/w/index.php?title=Computer_software
http://en.wikipedia.org/w/index.php?title=Quicksort
http://en.wikipedia.org/w/index.php?title=Big_O_notation
http://en.wikipedia.org/w/index.php?title=Computational_geometry
http://en.wikipedia.org/w/index.php?title=Convex_hull
http://en.wikipedia.org/w/index.php?title=Delaunay_triangulation
http://en.wikipedia.org/w/index.php?title=Randomized_incremental_construction
http://en.wikipedia.org/w/index.php?title=Randomized_incremental_construction

Randomized algorithm 4

If , by definition we have . Without loss of generality, we assume that
.

On the other hand, .
If , then the first entry of is 0, that is

Since , we can solve for :

If we fix all except , the equality holds for at most one of the two choices for . Therefore,
.

We run the loop for k times. If , the algorithm is always correct; if , the probability of

getting the correct answer is at least .

Min cut

Figure 2: Successful run of Karger’s algorithm on
a 10-vertex graph. The minimum cut has size 3

and is indicated by the vertex colours.

Input: A graph G(V,E)
Output: A cut partitioning the vertices into L and R, with the minimum
number of edges between L and R.

Recall that the contraction of two nodes, u and v, in a (multi-)graph
yields a new node u ' with edges that are the union of the edges
incident on either u or v, except from any edge(s) connecting u and v. Figure 1 gives an example of contraction of
vertex A and B. After contraction, the resulting graph may have parallel edges, but contains no self loops.

Figure 1: Contraction of vertex A and B

Karger's [5] basic algorithm:

 begin

 i=1

 repeat

 repeat

 Take a random edge (u,v)∈ E in G
 replace u and v with the contraction u'

 until only 2 nodes remain

 obtain the corresponding cut result C
i

http://en.wikipedia.org/w/index.php?title=File%3ASingle_run_of_Karger%E2%80%99s_Mincut_algorithm.svg
http://en.wikipedia.org/w/index.php?title=Graph_theory
http://en.wikipedia.org/w/index.php?title=Cut_%28graph_theory%29
http://en.wikipedia.org/w/index.php?title=Edge_contraction
http://en.wikipedia.org/w/index.php?title=File%3AContraction_vertices.jpg

Randomized algorithm 5

 i=i+1

 until i=m

 output the minimum cut among C
1
,C

2
,...,C

m
.

 end

In each execution of the outer loop, the algorithm repeats the inner loop until only 2 nodes remain, the corresponding
cut is obtained. The run time of one execution is , and n denotes the number of vertices. After m times
executions of the outer loop, we output the minimum cut among all the results. The figure 2 gives an example of one
execution of the algorithm. After execution, we get a cut of size 3.
Lemma 1: Let k be the min cut size, and let C = {e1,e2,...,ek} be the min cut. If, during iteration i, no edge e ∈ C is
selected for contraction, then Ci = C.
Proof: If G is not connected, then G can be partitioned into L and R without any edge between them. So the min cut
in a disconnected graph is 0. Now, assume G is connected. Let V=L∪ R be the partition of V induced by C : C={
{u,v} ∈ E : u ∈ L,v ∈ R } (well-defined since G is connected). Consider an edge {u,v} of C. Initially, u,v are distinct
vertices. As long as we pick an edge f ≠ e, u and v do not get merged. Thus, at the end of the algorithm, we have two
compound nodes covering the entire graph, one consisting of the vertices of L and the other consisting of the vertices
of R. As in figure 2, the size of min cut is 1, and C = {(A,B)}. If we don't select (A,B) for contraction, we can get the
min cut.
Lemma 2: If G is a multigraph with p vertices and whose min cut has size k, then G has at least pk/2 edges.
Proof: Because the min cut is k, every vertex v must satisfy degree(v) ≥ k. Therefore, the sum of the degree is at least
pk. But it is well known that the sum of vertex degrees equals 2|E|. The lemma follows.
Analysis of algorithm

The probability that the algorithm succeeds is 1 − the probability that all attempts fail. By independence, the
probability that all attempts fail is

By lemma 1, the probability that Ci = C is the probability that no edge of C is selected during iteration i. Consider the
inner loop and let Gj denote the graph after j edge contractions, where j ∈ {0,1,...,n − 3}. Gj has n − j vertices. We
use the chain rule of conditional possibilities. The probability that the edge chosen at iteration j is not in C, given that

no edge of C has been chosen before, is . Note that Gj still has min cut of size k, so by Lemma 2, it

still has at least edges.

Thus, .

So by the chain rule, the probability of finding the min cut C is

Cancellation gives . Thus the probability that the algorithm succeeds is at least

. For , this is equivalent to . The algorithm finds the min

cut with probability , in time .

http://en.wikipedia.org/w/index.php?title=Conditional_probability

Randomized algorithm 6

Derandomization
Randomness can be viewed as a resource, like space and time. Derandomization is then the process of removing
randomness (or using as little of it as possible). From the viewpoint of computational complexity, derandomizing an
efficient randomized algorithm is the question, is P = BPP ?
There are also specific methods that can be employed to derandomize particular randomized algorithms:
• the method of conditional probabilities, and its generalization, pessimistic estimators
• discrepancy theory (which is used to derandomize geometric algorithms)
• the exploitation of limited independence in the random variables used by the algorithm, such as the pairwise

independence used in universal hashing
• the use of expander graphs (or dispersers in general) to amplify a limited amount of initial randomness (this last

approach is also referred to as generating pseudorandom bits from a random source, and leads to the related topic
of pseudorandomness)

Where randomness helps
When the model of computation is restricted to Turing machines, it is currently an open question whether the ability
to make random choices allows some problems to be solved in polynomial time that cannot be solved in polynomial
time without this ability; this is the question of whether P = BPP. However, in other contexts, there are specific
examples of problems where randomization yields strict improvements.
• Based on the initial motivating example: given an exponentially long string of 2k characters, half a's and half b's, a

random access machine requires at least 2k−1 lookups in the worst-case to find the index of an a; if it is permitted
to make random choices, it can solve this problem in an expected polynomial number of lookups.

• In communication complexity, the equality of two strings can be verified using bits of communication
with a randomized protocol. Any deterministic protocol requires bits.

• The volume of a convex body can be estimated by a randomized algorithm to arbitrary precision in polynomial
time.[6] Bárány and Füredi showed that no deterministic algorithm can do the same.[7] This is true
unconditionally, i.e. without relying on any complexity-theoretic assumptions.

• A more complexity-theoretic example of a place where randomness appears to help is the class IP. IP consists of
all languages that can be accepted (with high probability) by a polynomially long interaction between an
all-powerful prover and a verifier that implements a BPP algorithm. IP = PSPACE.[8] However, if it is required
that the verifier be deterministic, then IP = NP.

• In a chemical reaction network (a finite set of reactions like A+B → 2C + D operating on a finite number of
molecules), the ability to ever reach a given target state from an initial state is decidable, while even
approximating the probability of ever reaching a given target state (using the standard concentration-based
probability for which reaction will occur next) is undecidable. More specifically, a Turing machine can be
simulated with arbitrarily high probability of running correctly for all time, only if a random chemical reaction
network is used. With a simple nondeterministic chemical reaction network (any possible reaction can happen
next), the computational power is limited to primitive recursive functions.

• The inherent randomness of algorithms such as Hyper-encryption, Bayesian networks, Random neural networks
and Probabilistic Cellular Automata was harnessed by Krishna Palem et al. to design highly efficient hardware
systems using Probabilistic CMOS or PCMOS technology that were shown to achieve gains that are as high as a
multiplicative factor of 560 when compared to a competing energy-efficient CMOS based realizations.[9]

http://en.wikipedia.org/w/index.php?title=Computational_complexity
http://en.wikipedia.org/w/index.php?title=P_%28complexity%29
http://en.wikipedia.org/w/index.php?title=Bounded-error_probabilistic_polynomial
http://en.wikipedia.org/w/index.php?title=Method_of_conditional_probabilities
http://en.wikipedia.org/w/index.php?title=Pessimistic_estimator
http://en.wikipedia.org/w/index.php?title=Discrepancy_theory
http://en.wikipedia.org/w/index.php?title=Pairwise_independence
http://en.wikipedia.org/w/index.php?title=Pairwise_independence
http://en.wikipedia.org/w/index.php?title=Universal_hashing
http://en.wikipedia.org/w/index.php?title=Expander_graph
http://en.wikipedia.org/w/index.php?title=Disperser
http://en.wikipedia.org/w/index.php?title=Pseudorandom
http://en.wikipedia.org/w/index.php?title=Turing_machine
http://en.wikipedia.org/w/index.php?title=Random_access_machine
http://en.wikipedia.org/w/index.php?title=Communication_complexity
http://en.wikipedia.org/w/index.php?title=Imre_B%C3%A1r%C3%A1ny
http://en.wikipedia.org/w/index.php?title=Zolt%C3%A1n_F%C3%BCredi
http://en.wikipedia.org/w/index.php?title=IP_%28complexity%29
http://en.wikipedia.org/w/index.php?title=PSPACE
http://en.wikipedia.org/w/index.php?title=NP_%28complexity%29
http://en.wikipedia.org/w/index.php?title=Chemical_reaction_network
http://en.wikipedia.org/w/index.php?title=Primitive_recursive
http://en.wikipedia.org/w/index.php?title=Hyper-encryption
http://en.wikipedia.org/w/index.php?title=Bayesian_network
http://en.wikipedia.org/w/index.php?title=Random_neural_network
http://en.wikipedia.org/w/index.php?title=Probabilistic_Cellular_Automata
http://en.wikipedia.org/w/index.php?title=Krishna_Palem
http://en.wikipedia.org/w/index.php?title=PCMOS
http://en.wikipedia.org/w/index.php?title=CMOS

Randomized algorithm 7

Notes
[1] "Probabilistic algorithms should not be mistaken with methods (which I refuse to call algorithms), which produce a result which has a high

probability of being correct. It is essential that an algorithm produces correct results (discounting human or computer errors), even if this
happens after a very long time." Henri Cohen (2000). A Course in Computational Algebraic Number Theory. Springer-Verlag, p. 2.

[2] "In testing primality of very large numbers chosen at random, the chance of stumbling upon a value that fools the Fermat test is less than the
chance that cosmic radiation will cause the computer to make an error in carrying out a 'correct' algorithm. Considering an algorithm to be
inadequate for the first reason but not for the second illustrates the difference between mathematics and engineering." Hal Abelson and Gerald
J. Sussman (1996). Structure and Interpretation of Computer Programs. MIT Press, section 1.2 (http:/ / mitpress. mit. edu/ sicp/ full-text/
book/ book-Z-H-11. html#footnote_Temp_80).

[3] Seidel R. Backwards Analysis of Randomized Geometric Algorithms (http:/ / www. cs. berkeley. edu/ ~jrs/ meshpapers/ Seidel. ps. gz).
[4] Michael Mitzenmacher, Eli Upfal. Probability and Computing:Randomized Algorithms and Probabilistic Analysis, April 2005. Cambridge

University Press
[5] A. A. Tsay, W. S. Lovejoy, David R. Karger, Random Sampling in Cut, Flow, and Network Design Problems, Mathematics of Operations

Research, 24(2):383–413, 1999.
[6] Dyer, M.; Frieze, A.; Kannan, R. (1991), "A random polynomial-time algorithm for approximating the volume of convex bodies" (http:/ /

portal. acm. org/ citation. cfm?id=102783), Journal of the ACM 38 (1): 1–17, doi:10.1145/102782.102783,
[7] Füredi, Z.; Bárány, I. (1986), "Computing the volume is difficult", Proc. 18th ACM Symposium on Theory of Computing (Berkeley,

California, May 28–30, 1986), New York, NY: ACM, pp. 442–447, doi:10.1145/12130.12176, ISBN 0-89791-193-8
[8] Shamir, A. (1992), "IP = PSPACE", Journal of the ACM 39 (4): 869–877, doi:10.1145/146585.146609
[9] Lakshmi N. Chakrapani, Bilge E. S. Akgul, Suresh Cheemalavagu, Pinar Korkmaz, Krishna V. Palem and Balasubramanian Seshasayee.

"Ultra Efficient Embedded SOC Architectures based on Probabilistic CMOS (PCMOS) Technology" (http:/ / www. pubzone. org/ dblp/ conf/
date/ ChakrapaniACKPS06). Design Automation and Test in Europe Conference (DATE), 2006. .

References
• Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms,

Second Edition. MIT Press and McGraw–Hill, 1990. ISBN 0-262-03293-7. Chapter 5: Probabilistic Analysis and
Randomized Algorithms, pp. 91–122.

• Jon Kleinberg and Éva Tardos. Algorithm Design. Chapter 13: "Randomized algorithms".
• Don Fallis. 2000. "The Reliability of Randomized Algorithms." (http:/ / dx. doi. org/ 10. 1093/ bjps/ 51. 2. 255)

British Journal for the Philosophy of Science 51:255–71.
• M. Mitzenmacher and E. Upfal. Probability and Computing : Randomized Algorithms and Probabilistic Analysis.

Cambridge University Press, New York (NY), 2005.
• Rajeev Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, New York (NY), 1995.
• Rajeev Motwani and P. Raghavan. Randomized Algorithms. (http:/ / portal. acm. org/ citation. cfm?id=234313.

234327) A survey on Randomized Algorithms.
• Christos Papadimitriou (1993), Computational Complexity (1st ed.), Addison Wesley, ISBN 0-201-53082-1

Chapter 11: Randomized computation, pp. 241–278.
• M. O. Rabin. (1980), "Probabilistic Algorithm for Testing Primality." Journal of Number Theory 12:128–38.
• A. A. Tsay, W. S. Lovejoy, David R. Karger, Random Sampling in Cut, Flow, and Network Design Problems,

Mathematics of Operations Research, 24(2):383–413, 1999.

http://en.wikipedia.org/w/index.php?title=Primality_test
http://en.wikipedia.org/w/index.php?title=Fermat_primality_test
http://en.wikipedia.org/w/index.php?title=Cosmic_radiation
http://en.wikipedia.org/w/index.php?title=Hal_Abelson
http://en.wikipedia.org/w/index.php?title=Gerald_J._Sussman
http://en.wikipedia.org/w/index.php?title=Gerald_J._Sussman
http://en.wikipedia.org/w/index.php?title=Structure_and_Interpretation_of_Computer_Programs
http://en.wikipedia.org/w/index.php?title=MIT_Press
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#footnote_Temp_80
http://mitpress.mit.edu/sicp/full-text/book/book-Z-H-11.html#footnote_Temp_80
http://www.cs.berkeley.edu/~jrs/meshpapers/Seidel.ps.gz
http://en.wikipedia.org/w/index.php?title=Michael_Mitzenmacher
http://portal.acm.org/citation.cfm?id=102783
http://portal.acm.org/citation.cfm?id=102783
http://en.wikipedia.org/w/index.php?title=Journal_of_the_ACM
http://en.wikipedia.org/w/index.php?title=Zolt%C3%A1n_F%C3%BCredi
http://en.wikipedia.org/w/index.php?title=Symposium_on_Theory_of_Computing
http://en.wikipedia.org/w/index.php?title=Adi_Shamir
http://www.pubzone.org/dblp/conf/date/ChakrapaniACKPS06
http://www.pubzone.org/dblp/conf/date/ChakrapaniACKPS06
http://en.wikipedia.org/w/index.php?title=Thomas_H._Cormen
http://en.wikipedia.org/w/index.php?title=Charles_E._Leiserson
http://en.wikipedia.org/w/index.php?title=Ronald_L._Rivest
http://en.wikipedia.org/w/index.php?title=Clifford_Stein
http://en.wikipedia.org/w/index.php?title=Introduction_to_Algorithms
http://en.wikipedia.org/w/index.php?title=Jon_Kleinberg
http://en.wikipedia.org/w/index.php?title=%C3%89va_Tardos
http://dx.doi.org/10.1093/bjps/51.2.255
http://en.wikipedia.org/w/index.php?title=Eli_Upfal
http://en.wikipedia.org/w/index.php?title=Rajeev_Motwani
http://portal.acm.org/citation.cfm?id=234313.234327
http://portal.acm.org/citation.cfm?id=234313.234327
http://en.wikipedia.org/w/index.php?title=Christos_Papadimitriou

Las Vegas algorithm 8

Las Vegas algorithm
In computing, a Las Vegas algorithm is a randomized algorithm that always gives correct results; that is, it always
produces the correct result or it informs about the failure. In other words, a Las Vegas algorithm does not gamble
with the verity of the result; it gambles only with the resources used for the computation. A simple example is
randomized quicksort, where the pivot is chosen randomly, but the result is always sorted. The usual definition of a
Las Vegas algorithm includes the restriction that the expected run time always be finite, when the expectation is
carried out over the space of random information, or entropy, used in the algorithm.
Las Vegas algorithms were introduced by László Babai in 1979, in the context of the graph isomorphism problem, as
a stronger version of Monte Carlo algorithms.[1][2][3] Las Vegas algorithms can be used in situations where the
number of possible solutions is relatively limited, and where verifying the correctness of a candidate solution is
relatively easy while actually calculating the solution is complex.
The name refers to the city of Las Vegas, Nevada, which is well known within the United States as an icon of
gambling.

Complexity class
The complexity class of decision problems that have Las Vegas algorithms with expected polynomial runtime is
ZPP.
It turns out that

which is intimately connected with the way Las Vegas algorithms are sometimes constructed. Namely the class RP
consists of all decision problems for which a randomized polynomial-time algorithm exists that always answers
correctly when the correct answer is "no", but is allowed to be wrong with a certain probability bounded away from
one when the answer is "yes". When such an algorithm exists for both a problem and its complement (with the
answers "yes" and "no" swapped), the two algorithms can be run simultaneously and repeatedly: a few steps of each,
taking turns, until one of them returns a definitive answer. This is the standard way to construct a Las Vegas
algorithm that runs in expected polynomial time. Note that in general there is no worst case upper bound on the run
time of a Las Vegas algorithm.

Relation to Monte Carlo algorithms
Las Vegas algorithms can be contrasted with Monte Carlo algorithms, in which the resources used are bounded but
the answer is not guaranteed to be correct 100% of the time. By an application of Markov's inequality, a Las Vegas
algorithm can be converted into a Monte Carlo algorithm via early termination.

Notes
[1] László Babai, Monte-Carlo algorithms in graph isomorphism testing (http:/ / people. cs. uchicago. edu/ ~laci/ lasvegas79. pdf), Université de

Montréal, D.M.S. No. 79-10.
[2] Leonid Levin, The Tale of One-way Functions (http:/ / arxiv. org/ abs/ cs. CR/ 0012023), Problems of Information Transmission, vol. 39

(2003), 92-103.
[3] Dan Grundy, Concepts and Calculation in Cryptography (http:/ / www. cs. kent. ac. uk/ people/ staff/ eab2/ crypto/ thesis. web. pdf),

University of Kent, Ph.D. thesis, 2008

http://en.wikipedia.org/w/index.php?title=Computing
http://en.wikipedia.org/w/index.php?title=Correctness_%28computer_science%29
http://en.wikipedia.org/w/index.php?title=Quicksort
http://en.wikipedia.org/w/index.php?title=L%C3%A1szl%C3%B3_Babai
http://en.wikipedia.org/w/index.php?title=Graph_isomorphism_problem
http://en.wikipedia.org/w/index.php?title=Las_Vegas%2C_Nevada
http://en.wikipedia.org/w/index.php?title=Complexity_class
http://en.wikipedia.org/w/index.php?title=Decision_problem
http://en.wikipedia.org/w/index.php?title=Expected_value
http://en.wikipedia.org/w/index.php?title=Zero-error_Probabilistic_Polynomial_time
http://en.wikipedia.org/w/index.php?title=RP_%28complexity%29
http://en.wikipedia.org/w/index.php?title=Markov%27s_inequality
http://en.wikipedia.org/w/index.php?title=L%C3%A1szl%C3%B3_Babai
http://people.cs.uchicago.edu/~laci/lasvegas79.pdf
http://en.wikipedia.org/w/index.php?title=Leonid_Levin
http://arxiv.org/abs/cs.CR/0012023
http://www.cs.kent.ac.uk/people/staff/eab2/crypto/thesis.web.pdf

Las Vegas algorithm 9

References
• Algorithms and Theory of Computation Handbook, CRC Press LLC, 1999, "Las Vegas algorithm", in Dictionary

of Algorithms and Data Structures [online], Paul E. Black, ed., U.S. National Institute of Standards and
Technology. 17 July 2006. (accessed May 09, 2009) Available from: (http:/ / www. nist. gov/ dads/ HTML/
lasVegas. html)

Monte Carlo algorithm
In computing, a Monte Carlo algorithm is a randomized algorithm whose running time is deterministic, but whose
output may be incorrect with a certain (typically small) probability.
The related class of Las Vegas algorithms is also randomized, but in a different way: they take an amount of time
that varies randomly, but always produce the correct answer. A Monte Carlo algorithm can be converted into a Las
Vegas algorithm whenever there exists a procedure to verify that the output produced by the algorithm is indeed
correct. If so, then the resulting Las Vegas algorithm is merely to repeatedly run the Monte Carlo algorithm until one
of the runs produces an output that can be verified to be correct.
The name refers to the grand casino in the Principality of Monaco at Monte Carlo, which is well-known around the
world as an icon of gambling.

One-sided vs two-sided error
Whereas the answer returned by a deterministic algorithm is always expected to be correct, this is not the case for
Monte Carlo algorithms. For decision problems, these algorithms are generally classified as either false-biased or
true-biased. A false-biased Monte Carlo algorithm is always correct when it returns false; a true-biased algorithm is
always correct when it returns true. While this describes algorithms with one-sided errors, others might have no
bias; these are said to have two-sided errors. The answer they provide (either true or false) will be incorrect, or
correct, with some bounded probability.
For instance, the Solovay–Strassen primality test is used to determine whether a given number is a prime number. It
always answers true for prime number inputs; for composite inputs, it answers false with probability at least 1/2 and
true with probability at most 1/2. Thus, false answers from the algorithm are certain to be correct, whereas the true
answers remain uncertain; this is said to be a (1/2)-correct false-biased algorithm.

Amplification
For a Monte Carlo algorithm with one-sided errors, the failure probability can be reduced (and the success
probability amplified) by running the algorithm k times. Consider again the Solovay–Strassen algorithm which is
(1/2)-correct false-biased. One may run this algorithm multiple times returning a false answer if it reaches a false
response within k iteration, and otherwise returning true. Thus, if number is prime then the answer is always correct,
and if the number is composite then the answer is correct with probability at least 1−(1−1/2)k = 1−2−k.
For Monte Carlo decision algorithms with two-sided error, the failure probability may again be reduced by running
the algorithm k times and returning the majority function of the answers.

http://en.wikipedia.org/w/index.php?title=National_Institute_of_Standards_and_Technology
http://en.wikipedia.org/w/index.php?title=National_Institute_of_Standards_and_Technology
http://www.nist.gov/dads/HTML/lasVegas.html
http://www.nist.gov/dads/HTML/lasVegas.html
http://en.wikipedia.org/w/index.php?title=Computing
http://en.wikipedia.org/w/index.php?title=Deterministic
http://en.wikipedia.org/w/index.php?title=Probability
http://en.wikipedia.org/w/index.php?title=Monte_Carlo_Casino
http://en.wikipedia.org/w/index.php?title=Monte_Carlo
http://en.wikipedia.org/w/index.php?title=Deterministic_algorithm
http://en.wikipedia.org/w/index.php?title=Decision_problem
http://en.wikipedia.org/w/index.php?title=Solovay%E2%80%93Strassen_primality_test
http://en.wikipedia.org/w/index.php?title=Prime_number
http://en.wikipedia.org/w/index.php?title=Majority_function

Monte Carlo algorithm 10

Complexity classes
The complexity class BPP describes decision problems that can be solved by polynomial-time Monte Carlo
algorithms with a bounded probability of two-sided errors, and the complexity class RP describes problems that can
be solved by a Monte Carlo algorithm with a bounded probability of one-sided error: if the correct answer is no, the
algorithm always says so, but it may answer no incorrectly for some instances where the correct answer is yes. In
contrast, the complexity class ZPP describes problems solvable by polynomial expected time Las Vegas algorithms.
ZPP ⊂ RP ⊂ BPP, but it is not known whether any of these complexity classes is distinct from each other; that is,
Monte Carlo algorithms may have more computational power than Las Vegas algorithms, but this has not been
proven. Another complexity class, PP, describes decision problems with a polynomial-time Monte Carlo algorithm
that is more accurate than flipping a coin but where the error probability cannot be bounded away from 1/2.

Applications in computational number theory
Well-known Monte Carlo algorithms include the Solovay–Strassen primality test, the Miller–Rabin primality test,
and certain fast variants of the Schreier–Sims algorithm in computational group theory.

References
• Motwani, Rajeev; Raghavan, Prabhakar (1995). Randomized Algorithms. New York: Cambridge University Press.

ISBN 0-521-47465-5.
• Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001). "Ch 5. Probabilistic

Analysis and Randomized Algorithms". Introduction to Algorithms (2nd ed.). Boston: MIT Press and
McGraw-Hill. ISBN 0-262-53196-8.

• Berman, Kenneth A; Paul, Jerome L. (2005). "Ch 24. Probabilistic and Randomized Algorithms". Algorithms:
Sequential, Parallel, and Distributed. Boston: Course Technology. ISBN 0-534-42057-5.

http://en.wikipedia.org/w/index.php?title=Complexity_class
http://en.wikipedia.org/w/index.php?title=Bounded-error_probabilistic_polynomial
http://en.wikipedia.org/w/index.php?title=Decision_problem
http://en.wikipedia.org/w/index.php?title=RP_%28complexity%29
http://en.wikipedia.org/w/index.php?title=ZPP_%28complexity%29
http://en.wikipedia.org/w/index.php?title=PP_%28complexity%29
http://en.wikipedia.org/w/index.php?title=Miller%E2%80%93Rabin_primality_test
http://en.wikipedia.org/w/index.php?title=Schreier%E2%80%93Sims_algorithm
http://en.wikipedia.org/w/index.php?title=Computational_group_theory
http://en.wikipedia.org/w/index.php?title=Rajeev_Motwani
http://en.wikipedia.org/w/index.php?title=Prabhakar_Raghavan
http://en.wikipedia.org/w/index.php?title=New_York
http://en.wikipedia.org/w/index.php?title=Thomas_H._Cormen
http://en.wikipedia.org/w/index.php?title=Charles_E._Leiserson
http://en.wikipedia.org/w/index.php?title=Ronald_Rivest
http://en.wikipedia.org/w/index.php?title=Clifford_Stein
http://en.wikipedia.org/w/index.php?title=Introduction_to_Algorithms
http://en.wikipedia.org/w/index.php?title=Boston
http://en.wikipedia.org/w/index.php?title=Boston

Article Sources and Contributors 11

Article Sources and Contributors
Randomized algorithm Source: http://en.wikipedia.org/w/index.php?oldid=533506990 Contributors: Altenmann, Andris, Andrés Agustín Baldrich, Angela, Arvindn, Avinash.lingamneni,
Bfinn, Bkell, Boffob, Booyabazooka, CRGreathouse, Cassowary, Centrx, Chad.netzer, Chmod007, ClamDip, Constructive editor, Courcelles, Cybercobra, David Eppstein, Dax5, Dcoetzee,
Electron9, Flammifer, GPHemsley, Giftlite, Gothmog.es, GregorB, Gwern, Harold f, Jamelan, Jenny Lam, John254, Justin W Smith, Jxfeng, Karl-Henner, Kku, KoenDelaere, Kope, Ledt.uoft,
Magioladitis, Maksim-e, Mandarax, Melcombe, Michael Hardy, Miym, Nikai, Oleg Alexandrov, Optim, Ott, PierreYvesLouis, Pinguin.tk, Piyush Sriva, Prosfilaes, Qwertyus, RiskAverse,
Rjwilmsi, Roll-Morton, RoyBoy, RunOrDie, Ruud Koot, SPhotographer, Schizoid, That Guy, From That Show!, The Anome, TheProject, Thore Husfeldt, Tomash, Tomchiukc, Ultimus,
Wavelength, Yaronf, Zmoboros, 59 anonymous edits

Las Vegas algorithm Source: http://en.wikipedia.org/w/index.php?oldid=532811379 Contributors: Adanner, Bender2k14, Booyabazooka, CesarB, Charles Matthews, Chenopodiaceous,
Dcoetzee, FiP, Froth, GIrving, Giftlite, Gunsfornuns, Hermel, Jamelan, Jbp.mccabe, Jitse Niesen, Justin W Smith, Mhym, Michael Hardy, Pinguin.tk, RobinK, Root4(one), RuED, Rufus210,
Ruud Koot, Schizoid, Stimpy, Superm401, Tobias Bergemann, TubularWorld, Vegaswikian, ZeroOne, 38 anonymous edits

Monte Carlo algorithm Source: http://en.wikipedia.org/w/index.php?oldid=511713883 Contributors: CBM, Charles Matthews, David Eppstein, Dcoetzee, Divide, Dylanwhs, Electron9,
Giftlite, Justin W Smith, LOL, Max Libbrecht, Melcombe, Michael Hardy, NTox, Ndickson, Pcap, Pushpendera, Ruud Koot, Sankyo68, Schizoid, Shacharg, Zfeinst, 7 anonymous edits

Image Sources, Licenses and Contributors 12

Image Sources, Licenses and Contributors
File:Single run of Karger’s Mincut algorithm.svg Source: http://en.wikipedia.org/w/index.php?title=File:Single_run_of_Karger’s_Mincut_algorithm.svg License: Creative Commons
Attribution-Sharealike 3.0 Contributors: Thore Husfeldt
File:Contraction vertices.jpg Source: http://en.wikipedia.org/w/index.php?title=File:Contraction_vertices.jpg License: Creative Commons Attribution-Sharealike 3.0 Contributors: Jxfeng

License 13

License
Creative Commons Attribution-Share Alike 3.0 Unported
//creativecommons.org/licenses/by-sa/3.0/

