
onJavaScript
lukas.weber@socialbakers.com

LEVEL 1

HISTORY

• 1995 JavaScript (Netscape Navigator 2.0, Brendan Eich)

• 1996 JScript (Internet Explorer 3)

DARK AGE™

“Optimized for IE4” a GIFs

Mix of HTML and <script> tags

Form validation

Obtrusive code

Security ...wasn't

FIRST BROWSER WAR ERA

• JavaScript competitors

• Macromedia Flash

• JAVA Applet

• Netscape vs. Microsoft

• Microsoft "Won" with Internet Explore 5

• XMLHttpRequest

LEVEL 2

Web Renaissance
• AJAX a Web 2.0

• Rise of PrototypeJS, Mootools and jQuery

• Unobtrusive Javascript

• CSS Selectors

• Still mash of HTML and JS

• Security concerns

AJAX

• XMLHttpRequest

• "Let client's CPU do the work" mentality

• Less data over network

• Better UX - almost instant responses

• Move from web pages to web applications

Second Browser War Era

• Internet Explorer became ancient nightmare of web
designers and developers

• Firefox a took the mainstream

• Then Chrome arrived

• ...Microsoft didn't recovered until IE 9

LEVEL 3

• All browsers standardized* incl. IE

• HTML5

• Server-Side JavaScript

• Mobile web

• You name it!

JavaScript Today

...JavaScript Everywhere
*mostly

Dependency hell

• include #stdio.h … <script src=“stdio.js”></script>

• CommonJS

• AMD

Dependency Hell

AMD is for browsers

 1 // helper.js
 2 define("helper", ["stdio"], function (stdio) {});

 1 // main.js
 2 require(["helper"], function (helper) {});

CommonJS is for server

 1 // helper.js
 2 exports.helper = function (stdio) {};

 1 // main.js
 2 var stdio = require("stdio");
 2 var helper = require("./helper")(stdio);

Modules are for?

 1 // helper.js
 2 export function helper (stdio) {};

 1 // main.js
 2 import * from io;
 3 import helper from helper;

npm

• node package manager

• server side

• client side via Browserify

Bower

• Web package manager

• bower.json

• simplicity of NPM

Build Systems

• Gruntfile.js

• Declarative

• FS based

• Gulpfile.js

• Imperative

• Streams

Dependencies

CommonJS

Lot of Magic™

Transformations

CommonJS/AMD

Code Splitting

Loaders

JAVASCRIPT
...a sort of

SPA

MVC, MVVM, MVP,
HMVC, ...

Mobile first

Unidirectional data
flow

IN AUS
jQuery

Monolithic "do it all"
frameworks

Desktop first

Event-based mess and
global state

fu
nk

yz
ei

t m
it

 b
rü

no

Neither column is right,

there is lot of "fad" in programming

Transpilled
JS ClojureScript

elm

Ty
pe
Sc
ri
pt

Co
ffe

eS
cr
ip
t

Dart

asm.js

JSX
AtScript
Objective-J

Closure Compiler

Sweet.js

EXPRESIVITY

SIMPLICITY

EFFECTIVITY

SAFETY

PRODUCTIVITY

Backbone.js
• First MV(whatever) I met on the web

• Still pretty good

• But very barebones

• Which makes good building block

• "Backbone with included batteries"

• Declarative, $directives directly in HTML

• Dependency injection

• Two-way data binding ...and dirty checking

• Version 2.0 will break everything

• by Google but not publicly used

Closure Tools

• Very old (2005) but not outdated, just
misunderstood

• by Google, internal project without public spotlight

• Library, Templates and Compiler

• Everything finetuned to work together

Closure Compiler

• Dependency
management

• Type checking

• Various code speed and
size optimization

• Dead code removal

• Minification and
obfuscation

• Actively developed

Coolest unknown javascript tool ™

React
• Facebook

• Inspired by Game Engines

• Virtual DOM & Event System

• 60 fps

• Extremely easy to understand

• State handling

the performance

What is performance?

- Hard numbers like FPS
- Memory and CPU

demands

Perceived performanceMeasured performance

work / time boredom x time

- Psychological aspects
- Broken dopamine

loops and flow

Easy side of performance
• Target to 30-60 FPS (33.3ms or 16.7ms per execution branch)

• Memory and CPU are still constraint on Mobile devices

• Use WebWorkers

• Batch work to smaller batches (use queues or CSP)

• Moving with stuff? Use requestAnimationFrame()

Common bottlenecks
• Memory leaks - use incremental heap dumps to find them

• Drawing performance - at 99% caused by DOM manipulation

• do all updates in one time

• disconnect nodes when lot of operations is needed

• Computation performance - stack introspection FTW, Flame
Graphs

• Network - reduce number of request for first render

Hard part
• User experience - very hard to make it right at first shot and even after

many attempts, it will be always just half luck :)

• It's like security - it's nothing you can just get and have, it's process you
have to follow

• Even (measurably) fastest app can feel snail-slow to user, because of
unnecessary waiting, bad navigation, network lags, broken flows, etc.

• Figure out usability first, then take care of code (if you're not doing CS)

• Learn to understand to your users and your UX designers (this one is
really hard:))

Future

• HTTP2

• ECMAScript 6

• WebComponents

• WebGL

• Native development

• asm.js?

Thank you!
lukas.weber@socialbakers.com

@techbakers

