
  

Chapter 5. Kernel Synchronization

  You could think of the kernel as a server that answers requests;  these requests can 
come either from a process running on a CPU or an external device issuing an 
interrupt request. 

  We make this analogy to underscore that parts of the kernel are not run serially, but 
in an interleaved way. Thus, they can give rise to race conditions, which must be 
controlled through proper synchronization techniques. 

  A general introduction to these topics can be found in the section "An Overview of Unix 
Kernels" in Chapter 1 of the book.

  We start this chapter by reviewing when, and to what extent, kernel requests are 
executed in an interleaved fashion. 

  We then introduce the basic synchronization primitives implemented by the kernel and 
describe how they are applied in the most common cases. 



  

5.1.1. Kernel Preemption
 a kernel is preemptive if a process switch may occur while the replaced process is 

executing a kernel function, that is, while it runs in Kernel Mode. 

 Unfortunately, in Linux (as well as in any other real operating system) things are 
much more complicated:

 Both in preemptive and nonpreemptive kernels, a process running in Kernel 
Mode can voluntarily relinquish the CPU, for instance because it has to sleep 
waiting for some resource. We will call this kind of process switch a planned 
process switch. 

 However, a preemptive kernel differs from a nonpreemptive kernel on the way a 
process running in Kernel Mode reacts to asynchronous events that could 
induce a process switch - for instance, an interrupt handler that awakes a higher 
priority process. We will call this kind of process switch a forced process 
switch.

 All process switches are performed by the switch_to macro. In both preemptive 
and nonpreemptive kernels, a process switch occurs when a process has 
finished some thread of kernel activity and the scheduler is invoked. However, in 
nonpreemptive kernels, the current process cannot be replaced unless it is 
about to switch to User Mode.

 Therefore, the main characteristic of a preemptive kernel is that a process running 
in Kernel Mode can be replaced by another process while in the middle of a kernel 
function.



  

examples to illustrate the difference between 
preemptive and nonpreemptive kernels.

 While process A executes an exception handler, a higher priority process B 
becomes runnable. This could happen, for instance, if an IRQ occurs and the 
corresponding handler awakens process B. 

 If the kernel is preemptive, a forced process switch replaces process A with B. 
The exception handler is left unfinished and will be resumed only when the 
scheduler selects again process A for execution. 

 Conversely, if the kernel is nonpreemptive, no process switch occurs until 
process A either finishes handling the exception handler or voluntarily 
relinquishes the CPU.

 For another example, consider a process that executes an exception handler and 
whose time quantum expires. 

 If the kernel is preemptive, the process may be replaced immediately; 

 however, if the kernel is nonpreemptive, the process continues to run until it 
finishes handling the exception handler or voluntarily relinquishes the CPU.



  

Dispatch latency 
and disabling preemption

 The main motivation for making a kernel preemptive is to reduce the dispatch latency 
of the User Mode processes, that is, the delay between the time they become runnable 
and the time they actually begin running. 

 Processes performing timely scheduled tasks (such as external hardware controllers, 
environmental monitors, movie players, and so on) really benefit from kernel preemption, 
because it reduces the risk of being delayed by another process running in Kernel Mode.

 Preemption is disabled when:

 The kernel is executing an interrupt service routine.

 The deferrable functions are disabled (always true when the kernel is executing a 
softirq or tasklet).

 The kernel preemption has been explicitly disabled by setting the preemption 
counter to a positive value.

 The above rules tell us that the kernel can be preempted only when it is executing an 
exception handler (in particular a system call) and the kernel preemption has not 
been explicitly disabled. 

 Furthermore the local CPU must have local interrupts enabled, otherwise kernel 
preemption is not performed.



  

5.1.2. When Synchronization Is 
Necessary   

 Chapter 1 introduced the concepts of race condition and critical region for 
processes.

 The same definitions apply to kernel control paths . In this chapter, a race 
condition can occur when the outcome of a computation depends on how two or more 
interleaved kernel control paths are nested. 

 A critical region is a section of code that must be completely executed by the kernel 
control path that enters it before another kernel control path can enter it.

 Interleaving kernel control paths complicates the life of kernel developers: they must 
apply special care in order to identify the critical regions in exception handlers, 
interrupt handlers, deferrable functions, and kernel threads . 

 Once a critical region has been identified, it must be suitably protected to ensure 
that any time at most one kernel control path is inside that region.



  

examples

 Suppose, for instance, that two different interrupt handlers need to access the same 
data structure that contains several related member variables for instance, a buffer and 
an integer indicating its length. 

 All statements affecting the data structure must be put into a single critical region. If 
the system includes a single CPU, the critical region can be implemented by 
disabling interrupts while accessing the shared data structure, because nesting of 
kernel control paths can only occur when interrupts are enabled.

 On the other hand, if the same data structure is accessed only by the service routines 
of system calls, and if the system includes a single CPU, the critical region can be 
implemented quite simply by disabling kernel preemption while accessing the shared 
data structure.

 As you would expect, things are more complicated in multiprocessor systems. Many 
CPUs may execute kernel code at the same time, so kernel developers cannot assume 
that a data structure can be safely accessed just because kernel preemption is disabled 
and the data structure is never addressed by an interrupt, exception, or softirq handler.

 We'll see in the following sections that the kernel offers a wide range of different 
synchronization techniques. It is up to kernel designers to solve each synchronization 
problem by selecting the most efficient technique.



  

5.1.3. When Synchronization Is Not 
Necessary

 Some design choices already discussed in the previous chapter simplify somewhat the 
synchronization of kernel control paths. Let us recall them briefly:

 All interrupt handlers acknowledge the interrupt on the PIC and also disable the IRQ line. 
Further occurrences of the same interrupt cannot occur until the handler terminates.

 Interrupt handlers, softirqs, and tasklets are both nonpreemptable and non-
blocking, so they cannot be suspended for a long time interval. 

 In the worst case, their execution will be slightly delayed, because other interrupts 
occur during their execution (nested execution of kernel control paths).

 A kernel control path performing interrupt handling cannot be interrupted by a kernel 
control path executing a deferrable function or a system call service routine.

 Softirqs and tasklets cannot be interleaved on a given CPU.

 The same tasklet cannot be executed simultaneously on several CPUs.



  

Code simplification

 Each of the above design choices can be viewed as a constraint that can be 
exploited to code some kernel functions more easily. 

 Here are a few examples of possible simplifications:

 Interrupt handlers and tasklets need not to be coded as reentrant functions.

 Per-CPU variables accessed by softirqs and tasklets only do not require 
synchronization.

 A data structure accessed by only one kind of tasklet does not require 
synchronization.

 The rest of this chapter describes what to do when synchronization is necessary i.e., 
how to prevent data corruption due to unsafe accesses to shared data structures.



  

5.2. Synchronization Primitives

 We now examine how kernel control paths can be interleaved while avoiding race 
conditions among shared data. 

 Table 5-2 lists the synchronization techniques used by the Linux kernel. 

 The "Scope" column indicates whether the synchronization technique applies to all CPUs 
in the system or to a single CPU. 

 For instance, local interrupt disabling applies to just one CPU (other CPUs in the 
system are not affected); 

 conversely, an atomic operation affects all CPUs in the system (atomic operations 
on several CPUs cannot interleave while accessing the same data structure).

 Let's now briefly discuss each synchronization technique. 



  

Table 5-2. Various types of synchronization 
techniques used by the kernel

Technique Description Scope

Per-CPU variables Duplicate a data structure among the CPUs All CPUs

Atomic operation Atomic read-modify-write instruction to a counter All CPUs

Memory barrier Avoid instruction reordering Local CPU or All CPUs

Spin lock Lock with busy wait All CPUs

Semaphore Lock with blocking wait (sleep) All CPUs

Seqlocks Lock based on an access counter All CPUs

Local interrupt disabling Forbid interrupt handling on a single CPU Local CPU

Local softirq disabling Forbid deferrable function handling on a single CPU Local CPU

Read-copy-update Lock-free access to shared data structures through pointers       All CPUs



  

5.2.1. Per-CPU Variables
 The best synchronization technique consists in designing the kernel so as to avoid 

the need for synchronization in the first place. As we'll see, in fact, every explicit 
synchronization primitive has a significant performance cost.

 The simplest and most efficient synchronization technique consists of declaring 
kernel variables as per-CPU variables . Basically, a per-CPU variable is an array of 
data structures, one element per each CPU in the system.

 A CPU should not access the elements of the array corresponding to the other CPUs; 
on the other hand, it can freely read and modify its own element without fear of 
race conditions, because it is the only CPU entitled to do so. 

 This also means, however, that the per-CPU variables can be used only in particular 
cases, basically, when it makes sense to logically split the data across the CPUs 
of the system.

 The elements of the per-CPU array are aligned in main memory so that each data 
structure falls on a different line of the hardware cache. Therefore, concurrent 
accesses to the per-CPU array do not result in cache line snooping and 
invalidation, which are costly operations in terms of system performance (“false 
sharing”).



  

per-CPU

 While per-CPU variables provide protection against concurrent accesses from 
several CPUs, they do not provide protection against accesses from 
asynchronous functions (interrupt handlers and deferrable functions). 

 In these cases, additional synchronization primitives are required.

 Furthermore, per-CPU variables are prone to race conditions caused by kernel 
preemption , both in uniprocessor and multiprocessor systems. 

 As a general rule, a kernel control path should access a per-CPU variable with kernel 
preemption disabled. 

 Just consider, for instance, what would happen if a kernel control path gets the 
address of its local copy of a per-CPU variable, and then it is preempted and 
moved to another CPU: the address still refers to the element of the previous 
CPU.



  

5.2.2. Atomic Operations       
 Several assembly language instructions are of type "read-modify-write" that is, they 

access a memory location twice, the first time to read the old value and the second time 
to write a new value.

 Suppose that two kernel control paths running on two CPUs try to "read-modify-write" the 
same memory location at the same time by executing nonatomic operations. 

 At first, both CPUs try to read the same location, but the memory arbiter (a hardware 
circuit that serializes accesses to the RAM chips) steps in to grant access to one of 
them and delay the other. 

 However, when the first read operation has completed, the delayed CPU reads exactly 
the same (old) value from the memory location. 

 Both CPUs then try to write the same (new) value to the memory location; again, the 
bus memory access is serialized by the memory arbiter, and eventually both write 
operations succeed. 

 However, the global result is incorrect because both CPUs write the same (new) value. 
Thus, the two interleaving "read-modify-write" operations act as a single one.

 The easiest way to prevent race conditions due to "read-modify-write" instructions is by 
ensuring that such operations are atomic at the chip level. Every such operation must 
be executed in a single instruction without being interrupted in the middle and avoiding 
accesses to the same memory location by other CPUs. These very small atomic operations 
can be found at the base of other, more flexible mechanisms to create critical regions.



  

80x86 Instructions and kernel atomic type and operations

 Assembly language instructions that make zero or one aligned memory access are atomic.

 Read-modify-write assembly language instructions (such as inc or dec) that read data from 
memory, update it, and write the updated value back to memory are atomic if no other 
processor has taken the memory bus after the read and before the write. Memory bus stealing 
never happens in a uniprocessor system.

 Read-modify-write assembly language instructions whose opcode is prefixed by the lock 
byte (0xf0) are atomic even on a multiprocessor system. When the control unit detects the 
prefix, it "locks" the memory bus until the instruction is finished. Therefore, other processors 
cannot access the memory location while the locked instruction is being executed.

 Assembly language instructions whose opcode is prefixed by a rep byte (0xf2, 0xf3, which 
forces the control unit to repeat the same instruction several times) are not atomic. The 
control unit checks for pending interrupts before executing a new iteration.

 When you write C code, you cannot guarantee that the compiler will use an atomic instruction 
for an operation like a=a+1 or even for a++. Thus, the Linux kernel provides a special 
atomic_t type (an atomically accessible counter) and some special functions and macros  
that act on atomic_t variables and are implemented as single, atomic assembly language 
instructions. On multiprocessor systems, each such instruction is prefixed by a lock 
byte.



  

5.2.3. Optimization and Memory 
Barriers             

 When using optimizing compilers, you should never take for granted that instructions will be 
performed in the exact order in which they appear in the source code. 

 For example, a compiler might reorder the assembly language instructions in such a way 
to optimize how registers are used. 

 Moreover, modern CPUs usually execute several instructions in parallel and might 
reorder memory accesses. These kinds of reordering can greatly speed up the program.

 When dealing with synchronization, however, reordering instructions must be avoided. 

 Things would quickly become hairy if an instruction placed after a synchronization 
primitive is executed before the synchronization primitive itself. 

 Therefore, all synchronization primitives act as optimization and memory barriers.



  

Optimization barriers

 An optimization barrier primitive ensures that the assembly language instructions 
corresponding to C statements placed before the primitive are not mixed by the 
compiler with assembly language instructions corresponding to C statements placed 
after the primitive. 

 In Linux the barrier( ) macro, which expands into asm volatile("":::"memory"), acts 
as an optimization barrier. 

 The asm instruction tells the compiler to insert an assembly language fragment 
(empty, in this case). 

 The volatile keyword forbids the compiler to reshuffle the asm instruction with the 
other instructions of the program. 

 The memory keyword forces the compiler to assume that all memory locations in 
RAM have been changed by the assembly language instruction; therefore, the 
compiler cannot optimize the code by using the values of memory locations stored in 
CPU registers before the asm instruction. 

 Notice that the optimization barrier does not ensure that the executions of the 
assembly language instructions are not mixed by the CPU, this is a job for a 
memory barrier.



  

Memory barriers
 A memory barrier primitive ensures that the operations placed before the primitive are 

finished before starting the operations placed after the primitive. 

 Thus, a memory barrier is like a firewall that cannot be passed by an assembly language 
instruction.

 In the 80x86 processors, the following kinds of assembly language instructions are said 
to be "serializing" because they act as memory barriers:

 All instructions that operate on I/O ports

 All instructions prefixed by the lock byte 

 All instructions that write into control registers, system registers, or debug 
registers (for instance, cli and sti)

 The lfence , sfence , and mfence assembly language instructions, which have 
been introduced in the Pentium 4 microprocessor to efficiently implement read memory 
barriers, write memory barriers, and read-write memory barriers, respectively.

 A few special assembly language instructions; among them, the iret instruction that 
terminates an interrupt or exception handler



  

Implementations 

 The implementations of the memory barrier primitives depend on the architecture of 
the system. 

 On an 80x86 microprocessor, the rmb( ) macro usually expands into asm 
volatile("lfence") if the CPU supports the lfence assembly language instruction, or 
into asm volatile("lock;addl $0,0(%%esp)":::"memory") otherwise. 

 The lock; addl $0,0(%%esp) assembly language instruction adds zero to the 
memory location on top of the stack; the instruction is useless by itself, but 
the lock prefix makes the instruction a memory barrier for the CPU.

 The wmb( ) macro is actually simpler because it expands into barrier( ). This is 
because existing Intel microprocessors never reorder write memory 
accesses, so there is no need to insert a serializing assembly language 
instruction in the code. The macro, however, forbids the compiler from 
shuffling the instructions.

 Notice that in multiprocessor systems, all atomic operations described in the 
earlier section "Atomic Operations" act as memory barriers because they use the 
lock byte.



  

5.2.4. Spin Locks    

 When a kernel control path must access a shared data structure or enter a critical 
region, it needs to acquire a "lock" for it. 

 A resource protected by a locking mechanism is quite similar to a resource confined 
in a room whose door is locked when someone is inside. 

 If a kernel control path wishes to access the resource, it tries to "open the door" by 
acquiring the lock. It succeeds only if the resource is free. Then, as long as it wants to 
use the resource, the door remains locked. When the kernel control path releases the 
lock, the door is unlocked and another kernel control path may enter the room.

 Figure 5-1 illustrates the use of locks. Five kernel control paths (P0, P1, P2, P3, and 
P4) are trying to access two critical regions (C1 and C2). Kernel control path P0 is 
inside C1, while P2 and P4 are waiting to enter it. At the same time, P1 is inside C2, 
while P3 is waiting to enter it. Notice that P0 and P1 could run concurrently. The lock 
for critical region C3 is open because no kernel control path needs to enter it.



  



  

Spin locks are a special kind of lock designed to 
work in a multiprocessor environment.

 If the kernel control path finds the spin lock "open," it acquires the lock and continues 
its execution. 

 Conversely, if the kernel control path finds the lock "closed" by a kernel control path 
running on another CPU, it "spins" around, repeatedly executing a tight instruction 
loop, until the lock is released.

 The instruction loop of spin locks represents a "busy wait." The waiting kernel control 
path keeps running on the CPU, even if it has nothing to do besides waste time.

  Nevertheless, spin locks are usually convenient, because many kernel resources 
are locked for a fraction of a millisecond only; therefore, it would be far more time-
consuming to release the CPU and reacquire it later.

 As a general rule, kernel preemption is disabled in every critical region 
protected by spin locks. 

 In the case of a uniprocessor system, the locks themselves are useless, and the 
spin lock primitives just disable or enable the kernel preemption. 

 Please notice that kernel preemption is still enabled during the busy wait phase, thus 
a process waiting for a spin lock to be released could be replaced by a higher priority 
process.



  

5.2.5. Read/Write Spin Locks

 Read/write spin locks have been introduced to increase the amount of 
concurrency inside the kernel. 

 They allow several kernel control paths to simultaneously read the same data 
structure, as long as no kernel control path modifies it. 

 If a kernel control path wishes to write to the structure, it must acquire the write 
version of the read/write lock, which grants exclusive access to the resource. 

 Of course, allowing concurrent reads on data structures improves system 
performance.

 Figure 5-2 illustrates two critical regions (C1 and C2) protected by read/write locks. 
Kernel control paths R0 and R1 are reading the data structures in C1 at the same 
time, while W0 is waiting to acquire the lock for writing. Kernel control path W1 is 
writing the data structures in C2, while both R2 and W2 are waiting to acquire the lock 
for reading and writing, respectively.



  



  

5.2.6. Seqlocks 
 When using read/write spin locks, requests issued by kernel control paths to perform a 

read_lock or a write_lock operation have the same priority: readers must wait until the 
writer has finished and, similarly, a writer must wait until all readers have finished.

 Seqlocks introduced in Linux 2.6 are similar to read/write spin locks, except that they give 
a much higher priority to writers: 

 in fact a writer is allowed to proceed even when readers are active. The good part 
of this strategy is that a writer never waits (unless another writer is active); 

 the bad part is that a reader may sometimes be forced to read the same data 
several times until it gets a valid copy.

 Each seqlock is a seqlock_t structure consisting of two fields: 

 a lock field of type spinlock_t and an integer sequence field. 

 This second field plays the role of a sequence counter. Each reader must read this 
sequence counter twice, before and after reading the data, and check whether the 
two values coincide. 

 In the opposite case, a new writer has become active and has increased the 
sequence counter, thus implicitly telling the reader that the data just read is not valid.



  

5.2.8. Semaphores  

 Essentially, they implement a locking primitive that allows waiters to sleep until the 
desired resource becomes free.

 Actually, Linux offers two kinds of semaphores:

 Kernel semaphores, which are used by kernel control paths

 System V IPC semaphores, which are used by User Mode processes

 In this section, we focus on kernel semaphores

 A kernel semaphore is similar to a spin lock, in that it doesn't allow a kernel control 
path to proceed unless the lock is open. 

 However, whenever a kernel control path tries to acquire a busy resource 
protected by a kernel semaphore, the corresponding process is suspended. It 
becomes runnable again when the resource is released. 

 Therefore, kernel semaphores can be acquired only by functions that are allowed 
to sleep: 

 interrupt handlers and deferrable functions cannot use them.



  

5.2.9. Read/Write Semaphores

 Read/write semaphores are similar to the read/write spin locks described earlier in 
the section "Read/Write Spin Locks," except that waiting processes are suspended 
instead of spinning until the semaphore becomes open again.

 Many kernel control paths may concurrently acquire a read/write semaphore for 
reading; however, every writer kernel control path must have exclusive access to the 
protected resource. Therefore, the semaphore can be acquired for writing only if no 
other kernel control path is holding it for either read or write access. 

 Read/write semaphores improve the amount of concurrency inside the kernel and 
improve overall system performance.

 The kernel handles all processes waiting for a read/write semaphore in strict FIFO 
order. Each reader or writer that finds the semaphore closed is inserted in the last 
position of a semaphore's wait queue list. When the semaphore is released, the 
process in the first position of the wait queue list are checked. The first process is 
always awoken. If it is a writer, the other processes in the wait queue continue to 
sleep. If it is a reader, all readers at the start of the queue, up to the first writer, are 
also woken up and get the lock. However, readers that have been queued after a 
writer continue to sleep.



  

5.2.11. Local Interrupt Disabling

 Interrupt disabling is one of the key mechanisms used to ensure that a sequence of 
kernel statements is treated as a critical section.

 It allows a kernel control path to continue executing even when hardware devices 
issue IRQ signals, thus providing an effective way to protect data structures that are 
also accessed by interrupt handlers. 

 By itself, however, local interrupt disabling does not protect against concurrent 
accesses to data structures by interrupt handlers running on other CPUs, 

 so in multiprocessor systems, local interrupt disabling is often coupled 
with spin locks .

 The local_irq_disable( ) macro, which makes use of the cli assembly language 
instruction, disables interrupts on the local CPU. The local_irq_enable( ) macro, 
which makes use of the of the sti assembly language instruction, enables them. 

 the cli and sti assembly language instructions, respectively, clear and set the IF flag 
of the eflags control register. The irqs_disabled( ) macro yields the value one if the 
IF flag of the eflags register is clear, the value one if the flag is set.
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