
  

Chapter 6. Timing Measurements

We can distinguish two main kinds of timing measurement that must be performed by 
the Linux kernel:

● Keeping the current time and date so they can be returned to user programs 
through the time( ), ftime( ), and gettimeofday( ) APIs and used by the kernel itself as 
timestamps for files and network packets

● Maintaining timers mechanisms that are able to notify the kernel or a user program  
that a certain interval of time has elapsed



  

6.1. Clock and Timer Circuits

On the 80x86 architecture, the kernel must explicitly interact with several kinds of 
clocks and timer circuits. 

●The clock circuits are used both to keep track of the current time of day and to make 
precise time measurements. 

●The timer circuits are programmed by the kernel, so that they issue interrupts at a fixed, 
predefined frequency; such periodic interrupts are crucial for implementing the software 
timers used by the kernel and the user programs. 

We'll now briefly describe the clock and hardware circuits that can be found in IBM-
compatible PCs.



  

6.1.1. Real Time Clock (RTC)
● All PCs include a clock called Real Time Clock (RTC), which is independent of the 
CPU and all other chips.

● The RTC continues to tick even when the PC is switched off, because it is energized by 
a small battery. The CMOS RAM and RTC are integrated in a single chip (the Motorola 
146818 or an equivalent).

● The RTC is capable of issuing periodic interrupts on IRQ 8 at frequencies ranging 
between 2 Hz and 8,192 Hz. 

● It can also be programmed to activate the IRQ 8 line when the RTC reaches a specific 
value, thus working as an alarm clock.

● Linux uses the RTC only to derive the time and date; however, it allows processes to 
program the RTC by acting on the /dev/rtc device file. 

● The kernel accesses the RTC through the 0x70 and 0x71 I/O ports. The system 
administrator can read and write the RTC by executing the clock Unix system program 
that acts directly on these two I/O ports.



  

6.1.2. Time Stamp Counter (TSC)

All 80x86 microprocessors include a CLK input pin, which receives the clock signal of an 
external oscillator. 

Starting with the Pentium, 80x86 microprocessors support a counter that is increased 
at each clock signal. 

The counter is accessible through the 64-bit Time Stamp Counter (TSC) register, which 
can be read by means of the rdtsc assembly language instruction. 

When using this register, the kernel has to take into consideration the frequency of 
the clock signal:if, for instance, the clock ticks at 1 GHz, the Time Stamp Counter is 
increased once every nanosecond.

Linux may take advantage of this register to get much more accurate time 
measurements.

The task of figuring out the actual frequency of a CPU is accomplished during the 
system's boot. The calibrate_tsc( ) function computes the frequency by counting the 
number of clock signals that occur in a time interval of approximately 5 milliseconds. 



  

6.1.3. Programmable Interval Timer
(PIT) 

 this device issues a special interrupt called timer interrupt, which notifies the kernel that 
one more time interval has elapsed.

the PIT goes on issuing interrupts forever at some fixed frequency established by 
the kernel. 

Each IBM-compatible PC includes at least one PIT, which is usually implemented by 
an 8254 CMOS chip using the 0x40-0x43 I/O ports.

The PIT is also used to drive an audio amplifier connected to the computer's internal 
speaker.



  

Tick ! 

As we'll see in detail in the next paragraphs, Linux programs the PIT of IBM-compatible 
PCs to issue timer interrupts on the IRQ 0 at a (roughly) 1000-Hz frequency that is, once 
every 1 millisecond. 

This time interval is called a tick, and its length in nanoseconds is stored in the tick_nsec 
variable. 

On a PC, tick_nsec is initialized to 999,848 nanoseconds (yielding a clock signal 
frequency of about 1000.15 Hz), but its value may be automatically adjusted by the 
kernel if the computer is synchronized with an external clock. 

The ticks beat time for all activities in the system; in some sense, they are like the 
ticks sounded by a metronome while a musician is rehearsing.



  

HZ
Generally speaking, shorter ticks result in higher resolution timers, which help with 
smoother multimedia playback and faster response time when performing synchronous I/
O multiplexing (poll( ) and select( ) system calls). 

This is a trade-off however: shorter ticks require the CPU to spend a larger fraction of 
its time in Kernel Mode that is, a smaller fraction of time in User Mode. As a 
consequence, user programs run slower.

A few macros in the Linux code yield some constants that determine the frequency of 
timer interrupts. These are discussed in the following list.

●HZ yields the approximate number of timer interrupts per second that is, their frequency. 
This value is set to 1000 for IBM Pcs.

●CLOCK_TICK_RATE yields the value 1,193,182, which is the 8254 chip's internal 
oscillator frequency.

●LATCH yields the ratio between CLOCK_TICK_RATE and HZ, rounded to the nearest 
integer. It is used to program the PIT.



  

6.1.4. CPU Local Timer

The local APIC present in recent 80 x 86 microprocessors provides yet another time-
measuring device: the CPU local timer .

The CPU local timer is a device similar to the Programmable Interval Timer just described 
that can issue one-shot or periodic interrupts. There are, however, a few differences:

The APIC's timer counter is 32 bits long, while the PIT's timer counter is 16 bits long; 
therefore, the local timer can be programmed to issue interrupts at very low frequencies 
(the counter stores the number of ticks that must elapse before the interrupt is issued).

The local APIC timer sends an interrupt only to its processor, while the PIT raises a 
global interrupt, which may be handled by any CPU in the system.

The APIC's timer is based on the bus clock signal (or the APIC bus signal, in older 
machines). It can be programmed in such a way to decrease the timer counter every 1, 2, 
4, 8, 16, 32, 64, or 128 bus clock signals. Conversely, the PIT, which makes use of its 
own clock signals, can be programmed in a more flexible way.



  

6.1.5 High Precision Event Timer

The High Precision Event Timer (HPET) is a new timer chip developed jointly by Intel 
and Microsoft. 

Basically, the chip includes up to eight 32-bit or 64-bit independent counters . 

Each counter is driven by its own clock signal, whose frequency must be at least 10 MHz; 
therefore, the counter is increased at least once in 100 nanoseconds. 

Any counter is associated with at most 32 timers, each of which is composed by a 
comparator and a match register. The comparator is a circuit that checks the value in the 
counter against the value in the match register, and raises a hardware interrupt if a match 
is found. Some of the timers can be enabled to generate a periodic interrupt.

The next generation of motherboards will likely sport both the HPET and the 8254 
PIT; in some future time, however, the HPET is expected to completely replace the 
PIT.



  

6.1.6. ACPI Power 
Management  Timer

The ACPI Power Management Timer (or ACPI PMT) is yet another clock device included 
in almost all ACPI-based motherboards. 

Its clock signal has a fixed frequency of roughly 3.58 MHz. The device is actually a 
simple counter increased at each clock tick; to read the current value of the counter, the 
kernel accesses an I/O port whose address is determined by the BIOS during the 
initialization phase.

The ACPI Power Management Timer is preferable to the TSC if the operating 
system or the BIOS may dynamically lower the frequency or voltage of the CPU to 
save battery power. When this happens, the frequency of the TSC changes, thus causing 
time warps and others unpleasant effects, while the frequency of the ACPI PMT does not. 
On the other hand, the high-frequency of the TSC counter is quite handy for 
measuring very small time intervals.

However, if an HPET device is present, it should always be preferred to the other 
circuits because of its richer architecture. Table 6-2 later in this chapter illustrates how 
Linux takes advantage of the available timing circuits.



  

6.2. The Linux Timekeeping 
Architecture

Linux must carry on several time-related activities. For instance, the kernel periodically:

●Updates the time elapsed since system startup.

●Updates the time and date.

●Determines, for every CPU, how long the current process has been running, and 
preempts it if it has exceeded the time allocated to it. 

●Updates resource usage statistics.

●Checks whether the interval of time associated with each software timer has elapsed.



  

Uniprocessor and multiprocessor 
time-keeping architecture

Linux's timekeeping architecture is the set of kernel data structures and functions 
related to the flow of time. 

Actually, 80 x 86-based multiprocessor machines have a timekeeping architecture that 
is slightly different from the timekeeping architecture of uniprocessor machines:

●In a uniprocessor system, all time-keeping activities are triggered by interrupts raised 
by the global timer (either the Programmable Interval Timer or the High Precision Event 
Timer).

●In a multiprocessor system, all general activities (such as handling of software timers) 
are triggered by the interrupts raised by the global timer, while CPU-specific activities 
(such as monitoring the execution time of the currently running process) are triggered by 
the interrupts raised by the local APIC timer.



  

6.2.1. Data Structures of the 
Timekeeping Architecture

The kernel uses two basic timekeeping functions: 

●one to keep the current time up-to-date and 

●another to count the number of nanoseconds that have elapsed within the current 
second. 

There are different ways to get the last value. Some methods are more precise and are 
available if the CPU has a Time Stamp Counter or a HPET; a less-precise method is used 
in the opposite case.



  

6.2.1.1. The timer object

In order to handle the possible timer sources in a uniform way, the kernel makes use of a "timer 
object", which is a descriptor of type timer_opts consisting of the timer name and of four 
standard methods shown in Table 6-1.

Table 6-1. The fields of the timer_opts data structure

Field name Description

name A string identifying the timer source

mark_offset Records the exact time of the last tick; it is invoked by the timer 
interrupt handler

get_offset Returns the time elapsed since the last tick

delay Waits for a given number of "loops" 



  

Time interpolation

The mark_offset method is invoked by the timer interrupt handler, and records in a 
suitable data structure the exact time at which the tick occurred. 

Using the saved value, the get_offset method computes the time in microseconds 
elapsed since the last timer interrupt (tick). 

Thanks to these two methods, Linux timekeeping architecture achieves a sub-tick 
resolution, that is, the kernel is able to determine the current time with a precision much 
higher than the tick duration. This operation is called time interpolation .



  

select_time()

The cur_timer variable stores the address of the timer object corresponding to the "best" 
timer source available in the system. 

Initially, cur_timer points to timer_none, which is the object corresponding to a dummy 
timer source used when the kernel is being initialized. 

During kernel initialization, the select_timer( ) function sets cur_timer to the address of 
the appropriate timer object. 

Table 6-2 shows the most common timer objects used in the 80x86 architecture, in order 
of preference. 

●As you see, select_timer( ) selects the HPET, if available; otherwise, it selects the ACPI 
Power Management Timer , if available, or the TSC. 

●As the last resort, select_timer( ) selects the always-present PIT. 

●The "Time interpolation" column lists the timer sources used by the mark_offset and 
get_offset methods of the timer object; 

●the "Delay" column lists the timer sources used by the delay method.



  

Table 6-2. Typical timer objects of the 80x86 
architecture, in order of preference

Timer object name Description Time interpolation Delay
timer_hpet HPET  HPET HPET

timer_pmtmr ACPI PMT ACPI PMT TSC

timer_tsc TSC TSC TSC

timer_pit PIT PIT Tight loop

timer_none dummy none  Tight loop

Notice that local APIC timers do not have a corresponding timer object. The reason is that 
local APIC timers are used only to generate periodic interrupts and are never used 
to achieve sub-tick resolution.



  

6.2.1.2. The jiffies variable

The jiffies variable is a counter that stores the number of elapsed ticks since the 
system was started. It is increased by one when a timer interrupt occurs, that is, on 
every tick. 

In the 80 x 86 architecture, jiffies is a 32-bit variable, therefore it wraps around in 
approximately 50 days, a relatively short time interval for a Linux server. 

In a few cases, however, the kernel needs the real number of system ticks elapsed since 
the system boot, regardless of the overflows of jiffies. Therefore, in the 80 x 86 
architecture the jiffies variable is equated by the linker to the 32 less significant bits of a 
64-bit counter called jiffies_64. 

With a tick of 1 millisecond, the jiffies_64 variable wraps around in several hundreds of 
millions of years, thus we can safely assume that it never overflows.

You might wonder why jiffies has not been directly declared as a 64-bit unsigned long 
long integer on the 80 x 86 architecture. The answer is that accesses to 64-bit variables in 
32-bit architectures cannot be done atomically. Therefore, every read operation on the 
whole 64 bits requires some synchronization technique to ensure that the counter is 
not updated while the two 32-bit half-counters are read; as a consequence, every 64-bit 
read operation is significantly slower than a 32-bit read operation.



  

The get_jiffies_64( ) function reads the value of jiffies_64 and returns its value:

    unsigned long long get_jiffies_64(void)
    {
        unsigned long seq;
        unsigned long long ret;
        do {
            seq = read_seqbegin(&xtime_lock);
            ret = jiffies_64;
        } while (read_seqretry(&xtime_lock, seq));
        return ret;
    }

The 64-bit read operation is protected by the xtime_lock seqlock: the function keeps 
reading the jiffies_64 variable until it knows for sure that it has not been concurrently 
updated by another kernel control path.

Conversely, the critical region increasing the jiffies_64 variable must be protected by 
means of write_seqlock(&xtime_lock ) and write_sequnlock( &xtime_lock). 

Notice that the ++jiffies_64 instruction also increases the 32-bit jiffies variable, because 
the latter corresponds to the lower half of jiffies_64.



  

6.2.1.3. The xtime variable

The xtime variable stores the current time and date; it is a structure of type timespec 
having two fields:

tv_sec
Stores the number of seconds that have elapsed since midnight of January 1, 1970 (UTC)

tv_nsec
Stores the number of nanoseconds that have elapsed within the last second (its value 
ranges between 0 and 999,999,999)

The xtime variable is usually updated once in a tick, that is, roughly 1000 times per 
second. 

user programs get the current time and date from the xtime variable. 
The kernel also often refers to it, for instance, when updating inode timestamps.

The xtime_lock seqlock avoids the race conditions that could occur due to concurrent 
accesses to the xtime variable. Remember that xtime_lock also protects the jiffies_64 
variable; in general, this seqlock is used to define several critical regions of the 
timekeeping architecture. 



  

6.2.2. Timekeeping Architecture 
in Uniprocessor Systems

In a uniprocessor system, all time-related activities are triggered by the interrupts 
raised by the Programmable Interval Timer on IRQ line 0. 

As usual, in Linux, some of these activities are executed as soon as possible right after 
the interrupt is raised, while the remaining activities are carried on by deferrable 
functions



  

6.2.2.1. Initialization phase

During kernel initialization, the time_init( ) function is invoked to set up the timekeeping 
architecture. It usually performs the following operations:

1. Initializes the xtime variable. The number of seconds elapsed since the midnight of 
January 1, 1970 is read from the Real Time Clock by means of the get_cmos_time( ) 
function. The tv_nsec field of xtime is set, so that the forthcoming overflow of the jiffies 
variable will coincide with an increment of the tv_sec field, that is, it will fall on a second 
boundary.

2. Initializes the wall_to_monotonic variable. This variable is of the same type timespec 
as xtime, and it essentially stores the number of seconds and nanoseconds to be added 
to xtime in order to get a monotonic (ever increasing) flow of time. 

In fact, both leap seconds and synchronization with external clocks might suddenly 
change the tv_sec and tv_nsec fields of xtime so that they are no longer monotonically 
increased. 

As we'll see in the later section "System Calls for POSIX Timers," sometimes the 
kernel needs a truly monotonic time source.



  

initialization...

3. If the kernel supports HPET, it invokes the hpet_enable( ) function to determine 
whether the ACPI firmware has probed the chip and mapped its registers in the memory 
address space. In the affirmative case, hpet_enable( ) programs the first timer of the 
HPET chip so that it raises the IRQ 0 interrupt 1000 times per second. Otherwise, if 
the HPET chip is not available, the kernel will use the PIT: the chip has already been 
programmed by the init_IRQ( ) function to raise 1000 timer interrupts per second, as 
described in the earlier section "Programmable Interval Timer (PIT)."

4. Invokes select_timer( ) to select the best timer source available in the system, and 
sets the cur_timer variable to the address of the corresponding timer object.

5. Invokes setup_irq( 0,&irq0) to set up the interrupt gate corresponding to IRQ0, the 
line associated with the system timer interrupt source (PIT or HPET).The irq0 variable is 
statically defined as:

    struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, 0,
                              "timer", NULL, NULL };

From now on, the timer_interrupt( ) function will be invoked once every tick with 
interrupts disabled, because the status field of IRQ 0's main descriptor has the 
SA_INTERRUPT flag set.



  

6.2.2.2. The timer interrupt 
handler

The timer_interrupt( ) function is the interrupt service routine (ISR) of the PIT or of the 
HPET; it performs the following steps:

1. Protects the time-related kernel variables by issuing a write_seqlock() on the 
xtime_lock seqlock.

2. Executes the mark_offset method of the cur_timer timer object. As explained in the 
earlier section "Data Structures of the Timekeeping Architecture," there are four possible 
cases:



  

Timer interrupt handler

3. Invokes the do_timer_interrupt( ) function, which in turn performs the following 
actions:

a. Increases by one the value of jiffies_64. Notice that this can be done safely, 
because the kernel control path still holds the xtime_lock seqlock for writing.

b. Invokes the update_times( ) function to update the system date and time and to 
compute the current system load; these activities are discussed later.

c. Invokes the update_process_times( ) function to perform several time-related 
accounting operations for the local CPU.

d. Invokes the profile_tick( ) function.

e. If the system clock is synchronized with an external clock (an adjtimex( ) system call 
has been previously issued), invokes the set_rtc_mmss( ) function once every 660 
seconds (every 11 minutes) to adjust the Real Time Clock. This feature helps systems on 
a network synchronize their clocks.



  

6.2.3. Timekeeping Architecture 
in Multiprocessor Systems    

Multiprocessor systems can rely on two different sources of timer interrupts: 
●those raised by the Programmable Interval Timer or the High Precision Event Timer,
●and those raised by the CPU local timers.

In Linux 2.6, global timer interrupts raised by the PIT or the HPETsignal activities not 
related to a specific CPU, such as handling of software timers and keeping the system 
time up-to-date. 

Conversely, a CPU local timer interrupt signals timekeeping activities related to the local 
CPU, such as monitoring how long the current process has been running and updating 
the resource usage statistics.



  

6.3. Updating the Time and Date  

User programs get the current time and date from the xtime variable. The kernel must 
periodically update this variable, so that its value is always reasonably accurate.

The update_times( ) function, which is invoked by the global timer interrupt handler, 
updates the value of the xtime variable as follows:

    void update_times(void)
    {
        unsigned long ticks;
        ticks = jiffies - wall_jiffies;
        if (ticks) {
            wall_jiffies += ticks;
            update_wall_time(ticks);
        }
        calc_load(ticks);
    }



  

The wall_jiffies variable stores the time of the last update of the xtime variable. Observe 
that the value of wall_jiffies can be smaller than jiffies-1, since a few timer interrupts can 
be lost, for instance when interrupts remain disabled for a long period of time;  The check 
for lost timer interrupts is done in the mark_offset method of cur_timer; 

The update_wall_time( ) function invokes the update_wall_time_one_tick( ) function ticks 
consecutive times; normally, each invocation adds 1,000,000 to the xtime.tv_nsec field. If 
the value of xtime.tv_nsec becomes greater than 999,999,999, the update_wall_time( ) 
function also updates the tv_sec field of xtime. If an adjtimex( ) system call has been 
issued, the function might tune the value 1,000,000 slightly so the clock speeds up or 
slows down a little.



  

6.4. Updating System Statistics

The kernel, among the other time-related duties, must periodically collect various data 
used for:

●Checking the CPU resource limit of the running processes

●Updating statistics about the local CPU workload

●Computing the average system load

●Profiling the kernel code



  

6.5. Software Timers and Delay 
Functions 

A timer is a software facility that allows functions to be invoked at some future moment, 
after a given time interval has elapsed; 

a time-out denotes a moment at which the time interval associated with a timer has 
elapsed.

Timers are widely used both by the kernel and by processes. Most device drivers use 
timers to detect anomalous conditions 

floppy disk drivers, for instance, use timers to switch off the device motor after the floppy 
has not been accessed for a while, and parallel printer drivers use them to detect 
erroneous printer conditions.

Timers are also used quite often by programmers to force the execution of specific 
functions at some future time 



  

timers

Implementing a timer is relatively easy. Each timer contains a field that indicates how far 
in the future the timer should expire. This field is initially calculated by adding the right 
number of ticks to the current value of jiffies. The field does not change. 

Every time the kernel checks a timer, it compares the expiration field to the value of 
jiffies at the current moment, and the timer expires when jiffies is greater than or equal 
to the stored value.

Linux considers two types of timers called dynamic timers and interval timers . The first 
type is used by the kernel, while interval timers may be created by processes in User 
Mode.



  

Not real time !

One word of caution about Linux timers: since checking for timer functions is always done 
by deferrable functions that may be executed a long time after they have been activated, 
the kernel cannot ensure that timer functions will start right at their expiration times. 

It can only ensure that they are executed either at the proper time or after with a 
delay of up to a few hundreds of milliseconds. For this reason, timers are not 
appropriate for real-time applications in which expiration times must be strictly 
enforced.

Besides software timers , the kernel also makes use of delay functions , which execute a 
tight instruction loop until a given time interval elapses. We will discuss them in the later 
section "Delay Functions."



  

6.5.1. Dynamic Timers

Dynamic timers may be dynamically created and destroyed. No limit is placed on the 
number of currently active dynamic timers.A dynamic timer is stored in the following 
timer_list structure:

    struct timer_list {
        struct list_head entry;
        unsigned long expires;
        spinlock_t lock;
        unsigned long magic;
        void (*function)(unsigned long);
        unsigned long data;
        tvec_base_t *base;
    };



  

The function field contains the address of the function to be executed when the timer 
expires. 

The data field specifies a parameter to be passed to this timer function. Thanks to the 
data field, it is possible to define a single general-purpose function that handles the time-
outs of several device drivers; the data field could store the device ID or other meaningful 
data that could be used by the function to differentiate the device.

The expires field specifies when the timer expires; the time is expressed as the number 
of ticks that have elapsed since the system started up. All timers that have an expires 
value smaller than or equal to the value of jiffies are considered to be expired or decayed.

The entry field is used to insert the software timer into one of the doubly linked circular 
lists that group together the timers according to the value of their expires field. The 
algorithm that uses these lists is described later in this chapter.



  

Timer softirq

Despite the clever data structures, handling software timers is a time-consuming 
activity that should not be performed by the timer interrupt handler. 

In Linux 2.6 this activity is carried on by a deferrable function, namely the 
TIMER_SOFTIRQ softirq.

The run_timer_softirq( ) function is the deferrable function associated with the 
TIMER_SOFTIRQ softirq.



  

6.5.3. Delay Functions 

●Software timers are useless when the kernel must wait for a short time intervallet's say, 
less than a few milliseconds. For instance, often a device driver has to wait for a 
predefined number of microseconds until the hardware completes some operation.

●Because a dynamic timer has a significant setup overhead and a rather large minimum 
wait time (1 millisecond), the device driver cannot conveniently use it.

●In these cases, the kernel makes use of the udelay( ) and ndelay( ) functions: the former 
receives as its parameter a time interval in microseconds and returns after the specified 
delay has elapsed; the latter is similar, but the argument specifies the delay in 
nanoseconds.



  

Essentially, the two functions are defined as follows:

void udelay(unsigned long usecs)
    {
        unsigned long loops;
        loops = (usecs*HZ*current_cpu_data.loops_per_jiffy)/1000000;
        cur_timer->delay(loops);
    }

    void ndelay(unsigned long nsecs)
    {
        unsigned long loops;
        loops = (nsecs*HZ*current_cpu_data.loops_per_jiffy)/1000000000;
        cur_timer->delay(loops);
    }
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